BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 16011798)

  • 1. The PD-(D/E)XK superfamily revisited: identification of new members among proteins involved in DNA metabolism and functional predictions for domains of (hitherto) unknown function.
    Kosinski J; Feder M; Bujnicki JM
    BMC Bioinformatics; 2005 Jul; 6():172. PubMed ID: 16011798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches.
    Knizewski L; Kinch LN; Grishin NV; Rychlewski L; Ginalski K
    BMC Struct Biol; 2007 Jun; 7():40. PubMed ID: 17584917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grouping together highly diverged PD-(D/E)XK nucleases and identification of novel superfamily members using structure-guided alignment of sequence profiles.
    Bujnicki JM; Rychlewski L
    J Mol Microbiol Biotechnol; 2001 Jan; 3(1):69-72. PubMed ID: 11200231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of new homologs of PD-(D/E)XK nucleases by support vector machines trained on data derived from profile-profile alignments.
    Laganeckas M; Margelevicius M; Venclovas C
    Nucleic Acids Res; 2011 Mar; 39(4):1187-96. PubMed ID: 20961958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. I-Ssp6803I: the first homing endonuclease from the PD-(D/E)XK superfamily exhibits an unusual mode of DNA recognition.
    Orlowski J; Boniecki M; Bujnicki JM
    Bioinformatics; 2007 Mar; 23(5):527-30. PubMed ID: 17242028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a new family of putative PD-(D/E)XK nucleases with unusual phylogenomic distribution and a new type of the active site.
    Feder M; Bujnicki JM
    BMC Genomics; 2005 Feb; 6():21. PubMed ID: 15720711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein stability indicates divergent evolution of PD-(D/E)XK type II restriction endonucleases.
    Fuxreiter M; Simon I
    Protein Sci; 2002 Aug; 11(8):1978-83. PubMed ID: 12142452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type II restriction endonuclease R.Eco29kI is a member of the GIY-YIG nuclease superfamily.
    Ibryashkina EM; Zakharova MV; Baskunov VB; Bogdanova ES; Nagornykh MO; Den'mukhamedov MM; Melnik BS; Kolinski A; Gront D; Feder M; Solonin AS; Bujnicki JM
    BMC Struct Biol; 2007 Jul; 7():48. PubMed ID: 17626614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical model of restriction endonuclease HpaI in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis.
    Skowronek KJ; Kosinski J; Bujnicki JM
    Proteins; 2006 Jun; 63(4):1059-68. PubMed ID: 16498623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type II restriction endonuclease R.Hpy188I belongs to the GIY-YIG nuclease superfamily, but exhibits an unusual active site.
    Kaminska KH; Kawai M; Boniecki M; Kobayashi I; Bujnicki JM
    BMC Struct Biol; 2008 Nov; 8():48. PubMed ID: 19014591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a new subfamily of HNH nucleases and experimental characterization of a representative member, HphI restriction endonuclease.
    Cymerman IA; Obarska A; Skowronek KJ; Lubys A; Bujnicki JM
    Proteins; 2006 Dec; 65(4):867-76. PubMed ID: 17029241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of Xanthomonas axonopodis pv. citri YaeQ reveals a new compact protein fold built around a variation of the PD-(D/E)XK nuclease motif.
    Guzzo CR; Nagem RA; Barbosa JA; Farah CS
    Proteins; 2007 Nov; 69(3):644-51. PubMed ID: 17623842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses.
    Orlowski J; Bujnicki JM
    Nucleic Acids Res; 2008 Jun; 36(11):3552-69. PubMed ID: 18456708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenomic analysis of the GIY-YIG nuclease superfamily.
    Dunin-Horkawicz S; Feder M; Bujnicki JM
    BMC Genomics; 2006 Apr; 7():98. PubMed ID: 16646971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual evolutionary history of the tRNA splicing endonuclease EndA: relationship to the LAGLIDADG and PD-(D/E)XK deoxyribonucleases.
    Bujnicki JM; Rychlewski L
    Protein Sci; 2001 Mar; 10(3):656-60. PubMed ID: 11344334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of restriction endonuclease MvaI in complex with DNA: a template for interpretation of experimental data and a guide for specificity engineering.
    Kosinski J; Kubareva E; Bujnicki JM
    Proteins; 2007 Jul; 68(1):324-36. PubMed ID: 17407166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily.
    Steczkiewicz K; Muszewska A; Knizewski L; Rychlewski L; Ginalski K
    Nucleic Acids Res; 2012 Aug; 40(15):7016-45. PubMed ID: 22638584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A homology model of restriction endonuclease SfiI in complex with DNA.
    Chmiel AA; Bujnicki JM; Skowronek KJ
    BMC Struct Biol; 2005 Jan; 5():2. PubMed ID: 15667656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The PD...(D/E)XK motif in restriction enzymes: a link between function and conformation.
    Dupureur CM; Dominguez MA
    Biochemistry; 2001 Jan; 40(2):387-94. PubMed ID: 11148032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative arrangements of catalytic residues at the active sites of restriction enzymes.
    Tamulaitis G; Solonin AS; Siksnys V
    FEBS Lett; 2002 May; 518(1-3):17-22. PubMed ID: 11997010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.