These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16011808)

  • 1. Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines.
    Wang J; Sung WK; Krishnan A; Li KB
    BMC Bioinformatics; 2005 Jul; 6():174. PubMed ID: 16011808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions.
    Yu CS; Lin CJ; Hwang JK
    Protein Sci; 2004 May; 13(5):1402-6. PubMed ID: 15096640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gram-positive and Gram-negative subcellular localization using rotation forest and physicochemical-based features.
    Dehzangi A; Sohrabi S; Heffernan R; Sharma A; Lyons J; Paliwal K; Sattar A
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S1. PubMed ID: 25734546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein location prediction using atomic composition and global features of the amino acid sequence.
    Cherian BS; Nair AS
    Biochem Biophys Res Commun; 2010 Jan; 391(4):1670-4. PubMed ID: 20036215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature extraction by statistical contact potentials and wavelet transform for predicting subcellular localizations in gram negative bacterial proteins.
    Arango-Argoty GA; Jaramillo-Garzón JA; Castellanos-Domínguez G
    J Theor Biol; 2015 Jan; 364():121-30. PubMed ID: 25219623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou׳s general PseAAC.
    Dehzangi A; Heffernan R; Sharma A; Lyons J; Paliwal K; Sattar A
    J Theor Biol; 2015 Jan; 364():284-94. PubMed ID: 25264267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein structural class based on multi-features fusion.
    Chen C; Chen LX; Zou XY; Cai PX
    J Theor Biol; 2008 Jul; 253(2):388-92. PubMed ID: 18423494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetaLocGramN: A meta-predictor of protein subcellular localization for Gram-negative bacteria.
    Magnus M; Pawlowski M; Bujnicki JM
    Biochim Biophys Acta; 2012 Dec; 1824(12):1425-33. PubMed ID: 22705560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.
    Saini H; Raicar G; Dehzangi A; Lal S; Sharma A
    J Theor Biol; 2015 Dec; 386():25-33. PubMed ID: 26386142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data.
    Shatkay H; Höglund A; Brady S; Blum T; Dönnes P; Kohlbacher O
    Bioinformatics; 2007 Jun; 23(11):1410-7. PubMed ID: 17392328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein subcellular localization prediction based on compartment-specific features and structure conservation.
    Su EC; Chiu HS; Lo A; Hwang JK; Sung TY; Hsu WL
    BMC Bioinformatics; 2007 Sep; 8():330. PubMed ID: 17825110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GNBSL: a new integrative system to predict the subcellular location for Gram-negative bacteria proteins.
    Guo J; Lin Y; Liu X
    Proteomics; 2006 Oct; 6(19):5099-105. PubMed ID: 16955516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Chou's 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment.
    Bouziane H; Chouarfia A
    J Integr Bioinform; 2020 Jun; 18(1):51-79. PubMed ID: 32598314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PSLpred: prediction of subcellular localization of bacterial proteins.
    Bhasin M; Garg A; Raghava GP
    Bioinformatics; 2005 May; 21(10):2522-4. PubMed ID: 15699023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TSSub: eukaryotic protein subcellular localization by extracting features from profiles.
    Guo J; Lin Y
    Bioinformatics; 2006 Jul; 22(14):1784-5. PubMed ID: 16787975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition.
    Saha S; Raghava GP
    Genomics Proteomics Bioinformatics; 2006 Feb; 4(1):42-7. PubMed ID: 16689701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AAIndexLoc: predicting subcellular localization of proteins based on a new representation of sequences using amino acid indices.
    Tantoso E; Li KB
    Amino Acids; 2008 Aug; 35(2):345-53. PubMed ID: 18163182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition.
    Shi JY; Zhang SW; Pan Q; Cheng YM; Xie J
    Amino Acids; 2007 Jul; 33(1):69-74. PubMed ID: 17235454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale predictions of gram-negative bacterial protein subcellular locations.
    Chou KC; Shen HB
    J Proteome Res; 2006 Dec; 5(12):3420-8. PubMed ID: 17137343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition.
    Höglund A; Dönnes P; Blum T; Adolph HW; Kohlbacher O
    Bioinformatics; 2006 May; 22(10):1158-65. PubMed ID: 16428265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.