These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16011916)

  • 1. An ecological 'footprint' of climate change.
    Walther GR; Berger S; Sykes MT
    Proc Biol Sci; 2005 Jul; 272(1571):1427-32. PubMed ID: 16011916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns and variability of projected bioclimatic habitat for Pinus albicaulis in the Greater Yellowstone Area.
    Chang T; Hansen AJ; Piekielek N
    PLoS One; 2014; 9(11):e111669. PubMed ID: 25372719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological and methodological drivers of species' distribution and phenology responses to climate change.
    Brown CJ; O'Connor MI; Poloczanska ES; Schoeman DS; Buckley LB; Burrows MT; Duarte CM; Halpern BS; Pandolfi JM; Parmesan C; Richardson AJ
    Glob Chang Biol; 2016 Apr; 22(4):1548-60. PubMed ID: 26661135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disparity in elevational shifts of European trees in response to recent climate warming.
    Rabasa SG; Granda E; Benavides R; Kunstler G; Espelta JM; Ogaya R; Peñuelas J; Scherer-Lorenzen M; Gil W; Grodzki W; Ambrozy S; Bergh J; Hódar JA; Zamora R; Valladares F
    Glob Chang Biol; 2013 Aug; 19(8):2490-9. PubMed ID: 23572443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.
    Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA
    Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling distribution in European stream macroinvertebrates under future climates.
    Domisch S; Araújo MB; Bonada N; Pauls SU; Jähnig SC; Haase P
    Glob Chang Biol; 2013 Mar; 19(3):752-62. PubMed ID: 23504833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate-driven changes to the spatio-temporal distribution of the parasitic nematode, Haemonchus contortus, in sheep in Europe.
    Rose H; Caminade C; Bolajoko MB; Phelan P; van Dijk J; Baylis M; Williams D; Morgan ER
    Glob Chang Biol; 2016 Mar; 22(3):1271-85. PubMed ID: 26482823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Illuminating geographical patterns in species' range shifts.
    Grenouillet G; Comte L
    Glob Chang Biol; 2014 Oct; 20(10):3080-91. PubMed ID: 24616088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change.
    Roura-Pascual N; Suarez AV; Gómez C; Pons P; Touyama Y; Wild AL; Peterson AT
    Proc Biol Sci; 2004 Dec; 271(1557):2527-35. PubMed ID: 15615677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of areas with the most significant shift in persistence of pests in Europe under climate change.
    Svobodová E; Trnka M; Dubrovský M; Semerádová D; Eitzinger J; Stěpánek P; Zalud Z
    Pest Manag Sci; 2014 May; 70(5):708-15. PubMed ID: 23901033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of global warming on the range distribution of different climatic groups of Aspidoscelis costata costata.
    Güizado-Rodríguez MA; Ballesteros-Barrera C; Casas-Andreu G; Barradas-Miranda VL; Téllez-Valdés O; Salgado-Ugarte IH
    Zoolog Sci; 2012 Dec; 29(12):834-43. PubMed ID: 23215975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breeding distributions of north American bird species moving north as a result of climate change.
    Hitch AT; Leberg PL
    Conserv Biol; 2007 Apr; 21(2):534-9. PubMed ID: 17391203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usefulness of bioclimatic models for studying climate change and invasive species.
    Jeschke JM; Strayer DL
    Ann N Y Acad Sci; 2008; 1134():1-24. PubMed ID: 18566088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directionality of recent bird distribution shifts and climate change in Great Britain.
    Gillings S; Balmer DE; Fuller RJ
    Glob Chang Biol; 2015 Jun; 21(6):2155-68. PubMed ID: 25482202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts.
    Crozier L; Dwyer G
    Am Nat; 2006 Jun; 167(6):853-66. PubMed ID: 16685639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating physiological threshold experiments with climate modeling to project mangrove species' range expansion.
    Cavanaugh KC; Parker JD; Cook-Patton SC; Feller IC; Williams AP; Kellner JR
    Glob Chang Biol; 2015 May; 21(5):1928-38. PubMed ID: 25558057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using ecological niche modelling to predict spatial and temporal distribution patterns in Chinese gibbons: lessons from the present and the past.
    Chatterjee HJ; Tse JS; Turvey ST
    Folia Primatol (Basel); 2012; 83(2):85-99. PubMed ID: 23038160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early signs of range disjunction of submountainous plant species: an unexplored consequence of future and contemporary climate changes.
    Kuhn E; Lenoir J; Piedallu C; Gégout JC
    Glob Chang Biol; 2016 Jun; 22(6):2094-105. PubMed ID: 26845484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking of climatic niche boundaries under recent climate change.
    La Sorte FA; Jetz W
    J Anim Ecol; 2012 Jul; 81(4):914-25. PubMed ID: 22372840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia.
    González C; Paz A; Ferro C
    Acta Trop; 2014 Jan; 129():83-90. PubMed ID: 23988300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.