These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16012634)

  • 21. Auditory evoked fields predict language ability and impairment in children.
    Oram Cardy JE; Flagg EJ; Roberts W; Roberts TP
    Int J Psychophysiol; 2008 May; 68(2):170-5. PubMed ID: 18304666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical locations of maximal spindle activity: magnetoencephalography (MEG) study.
    Gumenyuk V; Roth T; Moran JE; Jefferson C; Bowyer SM; Tepley N; Drake CL
    J Sleep Res; 2009 Jun; 18(2):245-53. PubMed ID: 19645968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory evoked fields differentially encode speech features: an MEG investigation of the P50m and N100m time courses during syllable processing.
    Tavabi K; Obleser J; Dobel C; Pantev C
    Eur J Neurosci; 2007 May; 25(10):3155-62. PubMed ID: 17561829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the auditory evoked magnetic fields during sleep.
    Naka D; Kakigi R; Hoshiyama M; Yamasaki H; Okusa T; Koyama S
    Neuroscience; 1999; 93(2):573-83. PubMed ID: 10465441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reliability of P50 auditory sensory gating measures in infants during active sleep.
    Hunter SK; Corral N; Ponicsan H; Ross RG
    Neuroreport; 2008 Jan; 19(1):79-82. PubMed ID: 18281897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Healthy-side dominance of middle- and long-latency neuromagnetic fields in idiopathic sudden sensorineural hearing loss.
    Li LP; Shiao AS; Chen LF; Niddam DM; Chang SY; Lien CF; Lee SK; Hsieh JC
    Eur J Neurosci; 2006 Aug; 24(3):937-46. PubMed ID: 16930421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurophysiological study of newborns with hypocalcemia.
    Watanabe K; Hara K; Miyazaki S; Hakamada S
    Neuropediatrics; 1982 Feb; 13(1):34-8. PubMed ID: 7078706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully complex magnetoencephalography.
    Simon JZ; Wang Y
    J Neurosci Methods; 2005 Nov; 149(1):64-73. PubMed ID: 16026851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromyographic activity and sleep states in infants.
    Liefting B; Bes F; Fagioli I; Salzarulo P
    Sleep; 1994 Dec; 17(8):718-22. PubMed ID: 7701183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple wavelet-based test for evoked responses.
    Norton JD; Eswaran H; Lowery CL; Wilson JD; Murphy P; Preissl H
    J Neurosci Methods; 2004 Sep; 138(1-2):157-64. PubMed ID: 15325124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-trial classification of MEG recordings.
    Guimaraes MP; Wong DK; Uy ET; Grosenick L; Suppes P
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):436-43. PubMed ID: 17355055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fetal magnetoencephalography--a multimodal approach.
    Eswaran H; Lowery CL; Wilson JD; Murphy P; Preissl H
    Brain Res Dev Brain Res; 2005 Jan; 154(1):57-62. PubMed ID: 15617755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatio-temporal reconstruction of bilateral auditory steady-state responses using MEG beamformers.
    Popescu M; Popescu EA; Chan T; Blunt SD; Lewine JD
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1092-102. PubMed ID: 18334401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prenatal evidence of left-right asymmetries in auditory evoked responses using fetal magnetoencephalography.
    Schleussner E; Schneider U; Arnscheidt C; Kähler C; Haueisen J; Seewald HJ
    Early Hum Dev; 2004 Jul; 78(2):133-6. PubMed ID: 15223118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Change detection in newborns using a multiple deviant paradigm: a study using magnetoencephalography.
    Sambeth A; Pakarinen S; Ruohio K; Fellman V; van Zuijen TL; Huotilainen M
    Clin Neurophysiol; 2009 Mar; 120(3):530-8. PubMed ID: 19211303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Newborns discriminate novel from harmonic sounds: a study using magnetoencephalography.
    Sambeth A; Huotilainen M; Kushnerenko E; Fellman V; Pihko E
    Clin Neurophysiol; 2006 Mar; 117(3):496-503. PubMed ID: 16426892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One year of musical training affects development of auditory cortical-evoked fields in young children.
    Fujioka T; Ross B; Kakigi R; Pantev C; Trainor LJ
    Brain; 2006 Oct; 129(Pt 10):2593-608. PubMed ID: 16959812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MEG identifies dorsal medial brain activations during sleep.
    Ioannides AA; Kostopoulos GK; Liu L; Fenwick PB
    Neuroimage; 2009 Jan; 44(2):455-68. PubMed ID: 18950718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study.
    Draganova R; Eswaran H; Murphy P; Huotilainen M; Lowery C; Preissl H
    Neuroimage; 2005 Nov; 28(2):354-61. PubMed ID: 16023867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oscillatory responses representing differential auditory processing in sleep.
    Karakaş S; Cakmak ED; Bekçi B; Aydin H
    Int J Psychophysiol; 2007 Jul; 65(1):40-50. PubMed ID: 17442440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.