These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16012705)

  • 1. Adaptive dynamic range optimization (ADRO): a digital amplification strategy for hearing aids and cochlear implants.
    Blamey PJ
    Trends Amplif; 2005; 9(2):77-98. PubMed ID: 16012705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance benefits for adults using a cochlear implant with adaptive dynamic range optimization (ADRO): a comparative study.
    Müller-Deile J; Kiefer J; Wyss J; Nicolai J; Battmer R
    Cochlear Implants Int; 2008 Mar; 9(1):8-26. PubMed ID: 18300224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personalization of Hearing Aid Fitting Based on Adaptive Dynamic Range Optimization.
    Ni A; Akbarzadeh S; Lobarinas E; Kehtarnavaz N
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal studies using adaptive dynamic range optimization (ADRO) technology.
    Iwaki T; Blamey P; Kubo T
    Int J Audiol; 2008 Jun; 47(6):311-8. PubMed ID: 18569103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of front-end processing on cochlear implant performance of children.
    Wolfe J; Schafer EC; John A; Hudson M
    Otol Neurotol; 2011 Jun; 32(4):533-8. PubMed ID: 21436756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of incorporating the adaptive dynamic range optimization amplification scheme into an assistive listening device for people with mild or moderate hearing loss.
    Chang HY; Luo CH; Lo TS; Chen HC; Huang KY; Liao WH; Su MC; Liu SY; Wang NM
    Assist Technol; 2018; 30(5):226-232. PubMed ID: 28846498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of different signal-processing options on speech-in-noise recognition for cochlear implant recipients with the cochlear CP810 speech processor.
    Potts LG; Kolb KA
    J Am Acad Audiol; 2014 Apr; 25(4):367-79. PubMed ID: 25126684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison between the first-fit settings of two multichannel digital signal-processing strategies: music quality ratings and speech-in-noise scores.
    Higgins P; Searchfield G; Coad G
    Am J Audiol; 2012 Jun; 21(1):13-21. PubMed ID: 22361320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using genetic algorithms with subjective input from human subjects: implications for fitting hearing aids and cochlear implants.
    Başkent D; Eiler CL; Edwards B
    Ear Hear; 2007 Jun; 28(3):370-80. PubMed ID: 17485986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing dynamic range in children using the nucleus cochlear implant.
    Dawson PW; Decker JA; Psarros CE
    Ear Hear; 2004 Jun; 25(3):230-41. PubMed ID: 15179114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive dynamic range optimization for cochlear implants: a preliminary study.
    James CJ; Blamey PJ; Martin L; Swanson B; Just Y; Macfarlane D
    Ear Hear; 2002 Feb; 23(1 Suppl):49S-58S. PubMed ID: 11883767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech perception for adults who use hearing aids in conjunction with cochlear implants in opposite ears.
    Mok M; Grayden D; Dowell RC; Lawrence D
    J Speech Lang Hear Res; 2006 Apr; 49(2):338-51. PubMed ID: 16671848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing Two Hearing Aid Fitting Algorithms for Bimodal Cochlear Implant Users.
    Vroegop JL; Homans NC; van der Schroeff MP; Goedegebure A
    Ear Hear; 2019; 40(1):98-106. PubMed ID: 29782445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting benefits from contralateral implants and hearing aids in cochlear implant users.
    van Hoesel RJ
    Hear Res; 2012 Jun; 288(1-2):100-13. PubMed ID: 22226928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compression-dependent differences in hearing aid gain between speech and nonspeech input signals.
    Henning RW; Bentler R
    Ear Hear; 2005 Aug; 26(4):409-22. PubMed ID: 16079635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A digital processing strategy to optimize hearing aid outputs directly.
    Blamey PJ; Martin LF; Fiket HJ
    J Am Acad Audiol; 2004; 15(10):716-28. PubMed ID: 15646669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of stimulus level on the speech perception abilities of children using cochlear implants or digital hearing aids.
    Davidson LS
    Ear Hear; 2006 Oct; 27(5):493-507. PubMed ID: 16957500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of extreme adaptive frequency compression in bimodal listeners on sound localization and speech perception.
    Veugen LCE; Chalupper J; Mens LHM; Snik AFM; van Opstal AJ
    Cochlear Implants Int; 2017 Sep; 18(5):266-277. PubMed ID: 28726592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A digital filterbank hearing aid: three digital signal processing algorithms--user preference and performance.
    Lunner T; Hellgren J; Arlinger S; Elberling C
    Ear Hear; 1997 Oct; 18(5):373-87. PubMed ID: 9360861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.