These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 16012780)
1. Catabolism of native and oxidized low density lipoproteins: in vivo insights from small animal positron emission tomography studies. Pietzsch J; Bergmann R; Wuest F; Pawelke B; Hultsch C; van den Hoff J Amino Acids; 2005 Dec; 29(4):389-404. PubMed ID: 16012780 [TBL] [Abstract][Full Text] [Related]
2. Fluorine-18 radiolabeling of low-density lipoproteins: a potential approach for characterization and differentiation of metabolism of native and oxidized low-density lipoproteins in vivo. Pietzsch J; Bergmann R; Rode K; Hultsch C; Pawelke B; Wuest F; van den Hoff J Nucl Med Biol; 2004 Nov; 31(8):1043-50. PubMed ID: 15607486 [TBL] [Abstract][Full Text] [Related]
3. Expression, purification and fluorine-18 radiolabeling of recombinant S100 proteins--potential probes for molecular imaging of receptor for advanced glycation endproducts (RAGE) in vivo. Hoppmann S; Haase C; Richter S; Pietzsch J Protein Expr Purif; 2008 Feb; 57(2):143-52. PubMed ID: 18039581 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and biodistribution of an 18F-labelled resveratrol derivative for small animal positron emission tomography. Gester S; Wuest F; Pawelke B; Bergmann R; Pietzsch J Amino Acids; 2005 Dec; 29(4):415-28. PubMed ID: 15997411 [TBL] [Abstract][Full Text] [Related]
5. Fluorine-18 Labeling of S100 Proteins for Small Animal Positron Emission Tomography. Laube M; Kniess T; Neuber C; Haase-Kohn C; Pietzsch J Methods Mol Biol; 2019; 1929():461-485. PubMed ID: 30710291 [TBL] [Abstract][Full Text] [Related]
6. Development of double-stranded siRNA labeling method using positron emitter and its in vivo trafficking analyzed by positron emission tomography. Hatanaka K; Asai T; Koide H; Kenjo E; Tsuzuku T; Harada N; Tsukada H; Oku N Bioconjug Chem; 2010 Apr; 21(4):756-63. PubMed ID: 20210335 [TBL] [Abstract][Full Text] [Related]
7. Fluorine-18 labeling of phosphopeptides: a potential approach for the evaluation of phosphopeptide metabolism in vivo. Richter S; Bergmann R; Pietzsch J; Ramenda T; Steinbach J; Wuest F Biopolymers; 2009; 92(6):479-88. PubMed ID: 19521975 [TBL] [Abstract][Full Text] [Related]
9. Cell death in cultured human Saos2 osteoblasts exposed to low-density lipoprotein. Klein BY; Rojansky N; Ben-Yehuda A; Abou-Atta I; Abedat S; Friedman G J Cell Biochem; 2003 Sep; 90(1):42-58. PubMed ID: 12938155 [TBL] [Abstract][Full Text] [Related]
10. Immunochemical characterization of purified human oxidized low-density lipoprotein antibodies. Virella G; Koskinen S; Krings G; Onorato JM; Thorpe SR; Lopes-Virella M Clin Immunol; 2000 May; 95(2):135-44. PubMed ID: 10779407 [TBL] [Abstract][Full Text] [Related]
11. Systematic comparison of two novel, thiol-reactive prosthetic groups for 18F labeling of peptides and proteins with the acylation agent succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Wuest F; Köhler L; Berndt M; Pietzsch J Amino Acids; 2009 Feb; 36(2):283-95. PubMed ID: 18414978 [TBL] [Abstract][Full Text] [Related]
12. Modification of low-density lipoprotein by different radioiodination methods. Sobal G; Resch U; Sinzinger H Nucl Med Biol; 2004 Apr; 31(3):381-8. PubMed ID: 15028251 [TBL] [Abstract][Full Text] [Related]
13. Module-assisted synthesis of the bifunctional labelling agent N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB). Mäding P; Füchtner F; Wüst F Appl Radiat Isot; 2005 Sep; 63(3):329-32. PubMed ID: 15949940 [TBL] [Abstract][Full Text] [Related]
14. Novel effect of oxidized low-density lipoprotein: cellular ATP depletion via downregulation of glyceraldehyde-3-phosphate dehydrogenase. Sukhanov S; Higashi Y; Shai SY; Itabe H; Ono K; Parthasarathy S; Delafontaine P Circ Res; 2006 Jul; 99(2):191-200. PubMed ID: 16778134 [TBL] [Abstract][Full Text] [Related]
15. In vivo cholesteryl ester selective uptake of mildly and standardly oxidized LDL occurs by both parenchymal and nonparenchymal mouse hepatic cells but SR-BI is only responsible for standardly oxidized LDL selective uptake by nonparenchymal cells. Bourret G; Brodeur MR; Luangrath V; Lapointe J; Falstrault L; Brissette L Int J Biochem Cell Biol; 2006; 38(7):1160-70. PubMed ID: 16427800 [TBL] [Abstract][Full Text] [Related]
16. Antibodies to oxidized low density lipoprotein: epidemiological studies and potential clinical applications in cardiovascular disease. Gounopoulos P; Merki E; Hansen LF; Choi SH; Tsimikas S Minerva Cardioangiol; 2007 Dec; 55(6):821-37. PubMed ID: 18091649 [TBL] [Abstract][Full Text] [Related]
17. (18)F-Labeled phosphopeptide-cell-penetrating peptide dimers with enhanced cell uptake properties in human cancer cells. Richter S; Bouvet V; Wuest M; Bergmann R; Steinbach J; Pietzsch J; Neundorf I; Wuest F Nucl Med Biol; 2012 Nov; 39(8):1202-12. PubMed ID: 22784382 [TBL] [Abstract][Full Text] [Related]
18. Effect of calcineurin inhibitors on low-density lipoprotein oxidation. Cofan F; Cofan M; Campos B; Guerra R; Campistol JM; Oppenheimer F Transplant Proc; 2005 Nov; 37(9):3791-3. PubMed ID: 16386540 [TBL] [Abstract][Full Text] [Related]
19. Human macrophages limit oxidation products in low density lipoprotein. Hultén LM; Ullström C; Krettek A; van Reyk D; Marklund SL; Dahlgren C; Wiklund O Lipids Health Dis; 2005 Mar; 4():6. PubMed ID: 15745457 [TBL] [Abstract][Full Text] [Related]
20. Site-selective radiolabeling of peptides by (18)F-fluorobenzoylation with [(18F)]SFB in solution and on solid phase: a comparative study. Kuchar M; Pretze M; Kniess T; Steinbach J; Pietzsch J; Löser R Amino Acids; 2012 Oct; 43(4):1431-43. PubMed ID: 22302364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]