BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16012819)

  • 1. Comparison of measured and modeled variations in piñon pine leaf water isotopic enrichment across a summer moisture gradient.
    Pendall E; Williams DG; Leavitt SW
    Oecologia; 2005 Oct; 145(4):605-18. PubMed ID: 16012819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves.
    Ogée J; Cuntz M; Peylin P; Bariac T
    Plant Cell Environ; 2007 Apr; 30(4):367-87. PubMed ID: 17324225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal and diurnal trends in progressive isotope enrichment along needles in two pine species.
    Kannenberg SA; Fiorella RP; Anderegg WRL; Monson RK; Ehleringer JR
    Plant Cell Environ; 2021 Jan; 44(1):143-155. PubMed ID: 33058213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment.
    Song X; Simonin KA; Loucos KE; Barbour MM
    Plant Cell Environ; 2015 Dec; 38(12):2618-28. PubMed ID: 25993893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen isotope composition of CAM and C3 Clusia species: non-steady-state dynamics control leaf water 18O enrichment in succulent leaves.
    Cernusak LA; Mejia-Chang M; Winter K; Griffiths H
    Plant Cell Environ; 2008 Nov; 31(11):1644-62. PubMed ID: 18684241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings.
    Roden JS; Farquhar GD
    Tree Physiol; 2012 Apr; 32(4):490-503. PubMed ID: 22440882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal variations in moisture use in a piñon-juniper woodland.
    West AG; Hultine KR; Burtch KG; Ehleringer JR
    Oecologia; 2007 Oct; 153(4):787-98. PubMed ID: 17576601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of stomatal density and leaf water content on the ¹⁸O enrichment of leaf water.
    Larcher L; Hara-Nishimura I; Sternberg L
    New Phytol; 2015 Apr; 206(1):141-151. PubMed ID: 25408145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?
    Rosado BH; De Mattos EA; Sternberg Lda S
    An Acad Bras Cienc; 2013 Sep; 85(3):1035-46. PubMed ID: 24068091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transpiration rate relates to within- and across-species variations in effective path length in a leaf water model of oxygen isotope enrichment.
    Song X; Barbour MM; Farquhar GD; Vann DR; Helliker BR
    Plant Cell Environ; 2013 Jul; 36(7):1338-51. PubMed ID: 23305086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees.
    Roden JS; Ehleringer JR
    Oecologia; 2000 Jun; 123(4):481-489. PubMed ID: 28308756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.
    Simonin KA; Roddy AB; Link P; Apodaca R; Tu KP; Hu J; Dawson TE; Barbour MM
    Plant Cell Environ; 2013 Dec; 36(12):2190-206. PubMed ID: 23647101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of water availability on leaf water isotopic enrichment in beech seedlings shows limitations of current fractionation models.
    Ferrio JP; Cuntz M; Offermann C; Siegwolf R; Saurer M; Gessler A
    Plant Cell Environ; 2009 Oct; 32(10):1285-96. PubMed ID: 19453484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation and acclimation of leaf gas exchange in a piñon-juniper woodland exposed to three different precipitation regimes.
    Limousin JM; Bickford CP; Dickman LT; Pangle RE; Hudson PJ; Boutz AL; Gehres N; Osuna JL; Pockman WT; McDowell NG
    Plant Cell Environ; 2013 Oct; 36(10):1812-25. PubMed ID: 23461476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life form-specific variations in leaf water oxygen-18 enrichment in Amazonian vegetation.
    Lai CT; Ometto JP; Berry JA; Martinelli LA; Domingues TF; Ehleringer JR
    Oecologia; 2008 Aug; 157(2):197-210. PubMed ID: 18543002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying drivers of leaf water and cellulose stable isotope enrichment in Eucalyptus in northern Australia.
    Munksgaard NC; Cheesman AW; English NB; Zwart C; Kahmen A; Cernusak LA
    Oecologia; 2017 Jan; 183(1):31-43. PubMed ID: 27798741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton.
    Song X; Loucos KE; Simonin KA; Farquhar GD; Barbour MM
    New Phytol; 2015 Apr; 206(2):637-46. PubMed ID: 25643590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observed relationships between leaf H218O Péclet effective length and leaf hydraulic conductance reflect assumptions in Craig-Gordon model calculations.
    Loucos KE; Simonin KA; Song X; Barbour MM
    Tree Physiol; 2015 Jan; 35(1):16-26. PubMed ID: 25576755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock.
    Rose KL; Graham RC; Parker DR
    Oecologia; 2003 Jan; 134(1):46-54. PubMed ID: 12647178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf water
    Bögelein R; Thomas FM; Kahmen A
    Plant Cell Environ; 2017 Jul; 40(7):1086-1103. PubMed ID: 28042668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.