BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16012909)

  • 21. Proton magnetic resonance spectroscopy in the frontal and temporal lobes of neuroleptic naive patients with schizophrenia.
    Cecil KM; Lenkinski RE; Gur RE; Gur RC
    Neuropsychopharmacology; 1999 Feb; 20(2):131-40. PubMed ID: 9885793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-preferring non-N-methyl-D-aspartate glutamate receptors within the medial temporal lobe in schizophrenia.
    Eastwood SL; Kerwin RW; Harrison PJ
    Biol Psychiatry; 1997 Mar; 41(6):636-43. PubMed ID: 9066986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal lobe and inferior frontal gyrus dysfunction in patients with schizophrenia during face-to-face conversation: a near-infrared spectroscopy study.
    Takei Y; Suda M; Aoyama Y; Yamaguchi M; Sakurai N; Narita K; Fukuda M; Mikuni M
    J Psychiatr Res; 2013 Nov; 47(11):1581-9. PubMed ID: 23978395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of microglia disturbances and immune-related marker abnormalities in cortical circuitry dysfunction in schizophrenia.
    Volk DW
    Neurobiol Dis; 2017 Mar; 99():58-65. PubMed ID: 28007586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism.
    Lue LF; Walker DG; Brachova L; Beach TG; Rogers J; Schmidt AM; Stern DM; Yan SD
    Exp Neurol; 2001 Sep; 171(1):29-45. PubMed ID: 11520119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Hypofrontality and negative symptoms in schizophrenia: synthesis of anatomic and neuropsychological knowledge and ecological perspectives].
    Semkovska M; Bédard MA; Stip E
    Encephale; 2001; 27(5):405-15. PubMed ID: 11760690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frontal, temporal, and striatal proton relaxation times in schizophrenic patients and normal comparison subjects.
    Williamson P; Pelz D; Merskey H; Morrison S; Karlik S; Drost D; Carr T; Conlon P
    Am J Psychiatry; 1992 Apr; 149(4):549-51. PubMed ID: 1554045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography.
    Wolkin A; Jaeger J; Brodie JD; Wolf AP; Fowler J; Rotrosen J; Gomez-Mont F; Cancro R
    Am J Psychiatry; 1985 May; 142(5):564-71. PubMed ID: 3872603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid and widespread microglial activation induced by traumatic brain injury in rat brain slices.
    Koshinaga M; Katayama Y; Fukushima M; Oshima H; Suma T; Takahata T
    J Neurotrauma; 2000 Mar; 17(3):185-92. PubMed ID: 10757324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuronal injury, but not microglia activation, is associated with ketamine-induced experimental schizophrenic model in mice.
    Hou Y; Zhang H; Xie G; Cao X; Zhao Y; Liu Y; Mao Z; Yang J; Wu C
    Prog Neuropsychopharmacol Biol Psychiatry; 2013 Aug; 45():107-16. PubMed ID: 23603358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Abnormal serine hydroxymethyl transferase activity in the temporal lobes of schizophrenics.
    Waziri R; Baruah S; Hegwood TS; Sherman AD
    Neurosci Lett; 1990 Dec; 120(2):237-40. PubMed ID: 2127307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of the synaptic protein rab3a in the thalamus and connecting brain regions in post-mortem schizophrenic brains.
    Blennow K; Bogdanovic N; Heilig M; Grenfeldt B; Karlsson I; Davidsson P
    J Neural Transm (Vienna); 2000; 107(8-9):1085-97. PubMed ID: 11041284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 31P NMR spectroscopy of phospholipid metabolites in postmortem schizophrenic brain.
    Komoroski RA; Pearce JM; Mrak RE
    Magn Reson Med; 2008 Mar; 59(3):469-74. PubMed ID: 18306399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Left orbitofrontal and superior temporal gyrus structural changes associated to suicidal behavior in patients with schizophrenia.
    Aguilar EJ; García-Martí G; Martí-Bonmatí L; Lull JJ; Moratal D; Escartí MJ; Robles M; González JC; Guillamón MI; Sanjuán J
    Prog Neuropsychopharmacol Biol Psychiatry; 2008 Oct; 32(7):1673-6. PubMed ID: 18657587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuropeptide deficits in schizophrenia vs. Alzheimer's disease cerebral cortex.
    Gabriel SM; Davidson M; Haroutunian V; Powchik P; Bierer LM; Purohit DP; Perl DP; Davis KL
    Biol Psychiatry; 1996 Jan; 39(2):82-91. PubMed ID: 8717605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Lowered oligodendroglial cell density in the prefrontal cortex in schizophrenia].
    Vostrikov VM; Uranova NA; Rakhmanova VI; Orlovskaia DD
    Zh Nevrol Psikhiatr Im S S Korsakova; 2004; 104(1):47-51. PubMed ID: 14870693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients.
    Toru M; Watanabe S; Shibuya H; Nishikawa T; Noda K; Mitsushio H; Ichikawa H; Kurumaji A; Takashima M; Mataga N
    Acta Psychiatr Scand; 1988 Aug; 78(2):121-37. PubMed ID: 2906213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurones and microglia in central nervous system immune response to degenerative processes. Part 1: Alzheimer's disease and Lewy body variant of Alzheimer's disease. Quantitative study.
    Szpak GM; Lechowicz W; Lewandowska E; Bertrand E; Wierzba-Bobrowicz T; Gwiazda E; Schmidt-Sidor B; Dymecki J
    Folia Neuropathol; 2001; 39(3):181-92. PubMed ID: 11770129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton magnetic resonance spectroscopy in subjects at risk for schizophrenia.
    Jessen F; Scherk H; Träber F; Theyson S; Berning J; Tepest R; Falkai P; Schild HH; Maier W; Wagner M; Block W
    Schizophr Res; 2006 Oct; 87(1-3):81-8. PubMed ID: 16842971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions.
    Tynan RJ; Naicker S; Hinwood M; Nalivaiko E; Buller KM; Pow DV; Day TA; Walker FR
    Brain Behav Immun; 2010 Oct; 24(7):1058-68. PubMed ID: 20153418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.