BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16012949)

  • 1. Glibenclamide stimulates fluid secretion in rodent cholangiocytes through a cystic fibrosis transmembrane conductance regulator-independent mechanism.
    Spirlì C; Fiorotto R; Song L; Santos-Sacchi J; Okolicsanyi L; Masier S; Rocchi L; Vairetti MP; De Bernard M; Melero S; Pozzan T; Strazzabosco M
    Gastroenterology; 2005 Jul; 129(1):220-33. PubMed ID: 16012949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ursodeoxycholic acid stimulates cholangiocyte fluid secretion in mice via CFTR-dependent ATP secretion.
    Fiorotto R; Spirlì C; Fabris L; Cadamuro M; Okolicsanyi L; Strazzabosco M
    Gastroenterology; 2007 Nov; 133(5):1603-13. PubMed ID: 17983806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P-glycoprotein inhibition by glibenclamide and related compounds.
    Golstein PE; Boom A; van Geffel J; Jacobs P; Masereel B; Beauwens R
    Pflugers Arch; 1999 Apr; 437(5):652-60. PubMed ID: 10087141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction of CFTR malfunction and stimulation of Ca-activated Cl channels restore HCO3- secretion in cystic fibrosis bile ductular cells.
    Zsembery A; Jessner W; Sitter G; Spirlí C; Strazzabosco M; Graf J
    Hepatology; 2002 Jan; 35(1):95-104. PubMed ID: 11786964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line.
    Sheppard DN; Robinson KA
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):333-46. PubMed ID: 9306276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired regulatory volume decrease in freshly isolated cholangiocytes from cystic fibrosis mice: implications for cystic fibrosis transmembrane conductance regulator effect on potassium conductance.
    Cho WK; Siegrist VJ; Zinzow W
    J Biol Chem; 2004 Apr; 279(15):14610-8. PubMed ID: 14722124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents.
    Sheppard DN; Welsh MJ
    J Gen Physiol; 1992 Oct; 100(4):573-91. PubMed ID: 1281220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effects of glibenclamide on cystic fibrosis transmembrane regulator, swelling-activated, and Ca(2+)-activated Cl- channels in mammalian cardiac myocytes.
    Yamazaki J; Hume JR
    Circ Res; 1997 Jul; 81(1):101-9. PubMed ID: 9201033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z; Lansdell KA; Sheppard DN
    Br J Pharmacol; 1999 Sep; 128(1):108-18. PubMed ID: 10498841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfonylurea receptors inhibit the epithelial sodium channel (ENaC) by reducing surface expression.
    Konstas AA; Bielfeld-Ackermann A; Korbmacher C
    Pflugers Arch; 2001 Aug; 442(5):752-61. PubMed ID: 11512032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystic fibrosis transmembrane conductance regulator (CFTR) confers glibenclamide sensitivity to outwardly rectifying chloride channel (ORCC) in Hi-5 insect cells.
    Julien M; Verrier B; Cerutti M; Chappe V; Gola M; Devauchelle G; Becq F
    J Membr Biol; 1999 Apr; 168(3):229-39. PubMed ID: 10191357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystic fibrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ channel Kir6.1.
    Ishida-Takahashi A; Otani H; Takahashi C; Washizuka T; Tsuji K; Noda M; Horie M; Sasayama S
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):23-30. PubMed ID: 9490811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.
    McNicholas CM; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8083-8. PubMed ID: 8755607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator.
    Poulsen JH; Fischer H; Illek B; Machen TE
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5340-4. PubMed ID: 7515498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel enhancer of insulinotrophic action by high glucose (JTT-608) stimulates insulin secretion from pancreatic beta-cells via a new cellular mechanism.
    Itabashi N; Okada K; Muto S; Fujita N; Ohta T; Miyazaki Ji ; Asano Y; Saito T
    J Pharmacol Exp Ther; 2001 Jun; 297(3):953-60. PubMed ID: 11356916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of hypoxia and AMPK on CFTR-mediated bicarbonate secretion in human cholangiocyte organoids.
    Roos FJM; Bijvelds MJC; Verstegen MMA; Roest HP; Metselaar HJ; Polak WG; Jonge HR; IJzermans JNM; van der Laan LJW
    Am J Physiol Gastrointest Liver Physiol; 2021 May; 320(5):G741-G752. PubMed ID: 33655768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFTR regulation of intracellular calcium in normal and cystic fibrosis human airway epithelia.
    Walsh DE; Harvey BJ; Urbach V
    J Membr Biol; 2000 Oct; 177(3):209-19. PubMed ID: 11014859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of membrane chloride currents in rat bile duct epithelial cells.
    Fitz JG; Basavappa S; McGill J; Melhus O; Cohn JA
    J Clin Invest; 1993 Jan; 91(1):319-28. PubMed ID: 7678606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel.
    Gupta J; Linsdell P
    Pflugers Arch; 2002 Mar; 443(5-6):739-47. PubMed ID: 11889571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and intracellular Ca(2+) release in HepG2 human hepatoblastoma cells.
    Kim JA; Kang YS; Lee SH; Lee EH; Yoo BH; Lee YS
    Biochem Biophys Res Commun; 1999 Aug; 261(3):682-8. PubMed ID: 10441486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.