BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16013234)

  • 21. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes.
    Jiang H; Wang XB; Li CY; Li JS; Xu FJ; Mao C; Yang WT; Shen J
    Langmuir; 2011 Sep; 27(18):11575-81. PubMed ID: 21851101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of the oxygenic groups on activated carbon on its hemocompatibility.
    Yue Z; Xiaoli G; Juan Z; Qun W; Feng W; Yongke Z
    Colloids Surf B Biointerfaces; 2024 Jan; 233():113655. PubMed ID: 37988821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-Time Visualization of Platelet Interaction With Micro Structured Surfaces.
    Gester K; Birtel S; Clauser J; Steinseifer U; Sonntag SJ
    Artif Organs; 2016 Feb; 40(2):201-7. PubMed ID: 26156134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Study and evaluation on hemocompatibility of biomaterials].
    Yang L; Xu J; Xi T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Oct; 26(5):1162-6. PubMed ID: 19947512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta(+5))O2 thin films.
    Chen JY; Leng YX; Tian XB; Wang LP; Huang N; Chu PK; Yang P
    Biomaterials; 2002 Jun; 23(12):2545-52. PubMed ID: 12033602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Hemocompatibility of a Direct Chemical Vapor Deposition-Derived Graphene Film.
    Meng X; Cheng Y; Wang P; Chen K; Chen Z; Liu X; Fu X; Wang K; Liu K; Liu Z; Duan X
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4835-4843. PubMed ID: 33474941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of nanotopography on the in vitro hemocompatibility of nanocrystalline diamond coatings.
    Skoog SA; Lu Q; Malinauskas RA; Sumant AV; Zheng J; Goering PL; Narayan RJ; Casey BJ
    J Biomed Mater Res A; 2017 Jan; 105(1):253-264. PubMed ID: 27543370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hemocompatibility of titania nanotube arrays.
    Smith BS; Yoriya S; Grissom L; Grimes CA; Popat KC
    J Biomed Mater Res A; 2010 Nov; 95(2):350-60. PubMed ID: 20629021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hemocompatibility investigation of the NiTi alloy implanted with tantalum.
    Zhao T; Li Y; Gao Y; Xiang Y; Chen H; Zhang T
    J Mater Sci Mater Med; 2011 Oct; 22(10):2311-8. PubMed ID: 21833606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing acute platelet adhesion on opaque metallic and polymeric biomaterials with fiber optic microscopy.
    Schaub RD; Kameneva MV; Borovetz HS; Wagner WR
    J Biomed Mater Res; 2000 Mar; 49(4):460-8. PubMed ID: 10602079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [In vitro evaluation of the function of sheet biomaterials in platelet activation].
    Xu J; Wang Z; Wang C; Xi T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):338-41. PubMed ID: 23858759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving hemocompatibility and accelerating endothelialization of vascular stents by a copper-titanium film.
    Liu H; Pan C; Zhou S; Li J; Huang N; Dong L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1175-82. PubMed ID: 27612815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications.
    Nandakumar D; Bendavid A; Martin PJ; Harris KD; Ruys AJ; Lord MS
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):6802-10. PubMed ID: 26928086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4.
    Seyfert UT; Biehl V; Schenk J
    Biomol Eng; 2002 Aug; 19(2-6):91-6. PubMed ID: 12202168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemocompatibility of polymeric nanostructured surfaces.
    Leszczak V; Smith BS; Popat KC
    J Biomater Sci Polym Ed; 2013; 24(13):1529-48. PubMed ID: 23848447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aqueous-based immobilization of initiator and surface-initiated ATRP to construct hemocompatible surface of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer.
    Hou J; Shi Q; Stagnaro P; Ye W; Jin J; Conzatti L; Yin J
    Colloids Surf B Biointerfaces; 2013 Nov; 111():333-41. PubMed ID: 23838201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorine doping into diamond-like carbon coatings inhibits protein adsorption and platelet activation.
    Hasebe T; Yohena S; Kamijo A; Okazaki Y; Hotta A; Takahashi K; Suzuki T
    J Biomed Mater Res A; 2007 Dec; 83(4):1192-1199. PubMed ID: 17600326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cora rotary pump for implantable left ventricular assist device: biomaterial aspects.
    Montiès JR; Dion I; Havlik P; Rouais F; Trinkl J; Baquey C
    Artif Organs; 1997 Jul; 21(7):730-4. PubMed ID: 9212947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement in hemocompatibility of chitosan/soy protein composite membranes by heparinization.
    Wang X; Shi N; Chen Y; Li C; Du X; Jin W; Chen Y; Chang PR
    Biomed Mater Eng; 2012; 22(1-3):143-50. PubMed ID: 22766713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.