These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 16013241)

  • 1. [Application of Burg algorithm in time-frequency analysis of Doppler blood flow signal based on AR modeling].
    Zhang Y; Zhou Y; Shi X; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Jun; 22(3):481-5. PubMed ID: 16013241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis.
    Zhang Y; Guo Z; Wang W; He S; Lee T; Loew M
    Med Eng Phys; 2003 Sep; 25(7):547-57. PubMed ID: 12835067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of lower limb arterial stenoses from Doppler blood flow signal analysis with time-frequency representation and pattern recognition techniques.
    Guo Z; Durand LG; Allard L; Cloutier G; Lee HC
    Ultrasound Med Biol; 1994; 20(4):335-46. PubMed ID: 8085290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of short-time spectral parametric methods for reducing the variance of the Doppler ultrasound mean instantaneous frequency estimation.
    Sava H; Durand LG; Cloutier G
    Med Biol Eng Comput; 1999 May; 37(3):291-7. PubMed ID: 10505377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of time-frequency distribution techniques for analysis of simulated Doppler ultrasound signals of the femoral artery.
    Guo Z; Durand LG; Lee HC
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):332-42. PubMed ID: 8063299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the blood Doppler frequency shift by a time-varying parametric approach.
    Girault JM; Kouamé D; Ouahabi A; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):682-7. PubMed ID: 10829752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modern spectral analysis techniques for blood flow velocity and spectral measurements with pulsed Doppler ultrasound.
    David JY; Jones SA; Giddens DP
    IEEE Trans Biomed Eng; 1991 Jun; 38(6):589-96. PubMed ID: 1879848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac Doppler blood-flow signal analysis. Part 2. Time/frequency representation based on autoregressive modelling.
    Guo Z; Durand LG; Allard L; Cloutier G; Lee HC; Langlois YE
    Med Biol Eng Comput; 1993 May; 31(3):242-8. PubMed ID: 8412377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction for broadening in Doppler blood flow spectrum estimated using wavelet transform.
    Zhang Y; Xu L; Chen J; Ma H; Shi X
    Med Eng Phys; 2006 Jul; 28(6):596-603. PubMed ID: 16256404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of quadrature Doppler signals from bidirectional slow blood flow close to the vessel wall using an adaptive decomposition algorithm.
    Zhang Y; Shi X; Zhang K; Chen J
    Med Eng Phys; 2009 Mar; 31(2):268-75. PubMed ID: 18829373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A double-gaussian, percentile-based method for estimating maximum blood flow velocity.
    Marzban C; Illian PR; Morison D; Mourad PD
    J Ultrasound Med; 2013 Nov; 32(11):1913-20. PubMed ID: 24154894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient algorithm to remove low frequency Doppler signals in digital Doppler systems.
    Hoeks AP; van de Vorst JJ; Dabekaussen A; Brands PJ; Reneman RS
    Ultrason Imaging; 1991 Apr; 13(2):135-44. PubMed ID: 1858218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bias and variance in the estimate of the Doppler frequency induced by a wall motion filter.
    Willemetz JC; Nowicki A; Meister JJ; De Palma F; Pante G
    Ultrason Imaging; 1989 Jul; 11(3):215-25. PubMed ID: 2675453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-ensemble-based eigen-processing methods for color flow imaging--Part II. The matrix pencil estimator.
    Yu AC; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):573-87. PubMed ID: 18407848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new clutter rejection algorithm for Doppler ultrasound.
    Cloutier G; Chen D; Durand LG
    IEEE Trans Med Imaging; 2003 Apr; 22(4):530-8. PubMed ID: 12774899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The removal of wall components in Doppler ultrasound signals by using the empirical mode decomposition algorithm.
    Zhang Y; Gao Y; Wang L; Chen J; Shi X
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1631-42. PubMed ID: 17867355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust time-varying identification algorithm using basis functions.
    Zou R; Wang H; Chon KH
    Ann Biomed Eng; 2003; 31(7):840-53. PubMed ID: 12971616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unified approach to modeling the backscattered Doppler ultrasound from blood.
    Mo LY; Cobbold RS
    IEEE Trans Biomed Eng; 1992 May; 39(5):450-61. PubMed ID: 1526636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution processing techniques for ultrasound doppler velocimetry in the presence of colored noise. Part I: Nonstationary methods.
    Kouamé D; Girault JM; Patat F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):257-66. PubMed ID: 12699159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in the power structures of Fourier transform and autoregressive spectral estimates of narrow-band Doppler signals.
    Fan L; Evans DH
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):387-90. PubMed ID: 8063305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.