BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16013877)

  • 1. Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy.
    Amerov AK; Chen J; Small GW; Arnold MA
    Anal Chem; 2005 Jul; 77(14):4587-94. PubMed ID: 16013877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions.
    Chen J; Arnold MA; Small GW
    Anal Chem; 2004 Sep; 76(18):5405-13. PubMed ID: 15362899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital filtering and model updating methods for improving the robustness of near-infrared multivariate calibrations.
    Kramer KE; Small GW
    Appl Spectrosc; 2009 Feb; 63(2):246-55. PubMed ID: 19215656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-line near-infrared spectrometer to monitor urea removal in real time during hemodialysis.
    Cho DS; Olesberg JT; Flanigan MJ; Arnold MA
    Appl Spectrosc; 2008 Aug; 62(8):866-72. PubMed ID: 18702859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral simulation methodology for calibration transfer of near-infrared spectra.
    Sulub Y; Small GW
    Appl Spectrosc; 2007 Apr; 61(4):406-13. PubMed ID: 17456259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multivariate calibration standardization across instruments for the determination of glucose by Fourier transform near-infrared spectrometry.
    Zhang L; Small GW; Arnold MA
    Anal Chem; 2003 Nov; 75(21):5905-15. PubMed ID: 14588032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of glucose concentrations in an aqueous matrix from NIR spectra using optimal time-domain filtering and partial least-squares regression.
    Ham FM; Kostanic IN; Cohen GM; Gooch BR
    IEEE Trans Biomed Eng; 1997 Jun; 44(6):475-85. PubMed ID: 9151481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pure component selectivity analysis of multivariate calibration models from near-infrared spectra.
    Arnold MA; Small GW; Xiang D; Qui J; Murhammer DW
    Anal Chem; 2004 May; 76(9):2583-90. PubMed ID: 15117201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blank augmentation protocol for improving the robustness of multivariate calibrations.
    Kramer KE; Small GW
    Appl Spectrosc; 2007 May; 61(5):497-506. PubMed ID: 17555619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring.
    Maruo K; Oota T; Tsurugi M; Nakagawa T; Arimoto H; Tamura M; Ozaki Y; Yamada Y
    Appl Spectrosc; 2006 Apr; 60(4):441-9. PubMed ID: 16613642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels.
    Olesberg JT; Liu L; Van Zee V; Arnold MA
    Anal Chem; 2006 Jan; 78(1):215-23. PubMed ID: 16383330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of total nitrogen content, pH, density, refractive index, and brix in Thai fish sauces and their classification by near-infrared spectroscopy with searching combination moving window partial least squares.
    Ritthiruangdej P; Kasemsumran S; Suwonsichon T; Haruthaithanasan V; Thanapase W; Ozaki Y
    Analyst; 2005 Oct; 130(10):1439-45. PubMed ID: 16172671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral simulation protocol for extending the lifetime of near-infrared multivariate calibrations.
    Sulub Y; Small GW
    Anal Chem; 2009 Feb; 81(3):1208-16. PubMed ID: 19132920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using scattering and absorption spectra as MCR-hard model constraints for diffuse reflectance measurements of tablets.
    Kessler W; Oelkrug D; Kessler R
    Anal Chim Acta; 2009 May; 642(1-2):127-34. PubMed ID: 19427467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of transmission and reflection modalities for measuring content uniformity of pharmaceutical tablets with near-infrared spectroscopy.
    Xiang D; LoBrutto R; Cheney J; Wabuyele BW; Berry J; Lyon R; Wu H; Khan MA; Hussain AS
    Appl Spectrosc; 2009 Jan; 63(1):33-47. PubMed ID: 19146717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research on the background correction in the non-invasive sensing of glucose by near-infrared spectroscopy].
    Liu R; Gu XY; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1772-5. PubMed ID: 18975800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molar absorptivities of glucose and other biological molecules in aqueous solutions over the first overtone and combination regions of the near-infrared spectrum.
    Amerov AK; Chen J; Arnold MA
    Appl Spectrosc; 2004 Oct; 58(10):1195-204. PubMed ID: 15527520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reference-wavelength-based method for improved analysis of near-infrared spectroscopy.
    Chen Y; Chen W; Shi Z; Yang Y; Xu K
    Appl Spectrosc; 2009 May; 63(5):544-8. PubMed ID: 19470211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood glucose measurement by multiple attenuated total reflection and infrared absorption spectroscopy.
    Mendelson Y; Clermont AC; Peura RA; Lin BC
    IEEE Trans Biomed Eng; 1990 May; 37(5):458-65. PubMed ID: 2345001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state digital micro-mirror array spectrometer for Hadamard transform measurements of glucose and lactate in aqueous solutions.
    Xiang D; Arnold MA
    Appl Spectrosc; 2011 Oct; 65(10):1170-80. PubMed ID: 21986077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.