BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16013877)

  • 21. Changes in the absorption and scattering properties in the near-infrared region during the growth of Bacillus subtilis in liquid culture.
    Dzhongova E; Harwood CR; Thennadil SN
    Appl Spectrosc; 2009 Jan; 63(1):25-32. PubMed ID: 19146716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noninvasive near-infrared blood glucose monitoring using a calibration model built by a numerical simulation method: Trial application to patients in an intensive care unit.
    Maruo K; Oota T; Tsurugi M; Nakagawa T; Arimoto H; Hayakawa M; Tamura M; Ozaki Y; Yamada Y
    Appl Spectrosc; 2006 Dec; 60(12):1423-31. PubMed ID: 17217592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calibration standardization algorithm for partial least-squares regression: application to the determination of physiological levels of glucose by near-infrared spectroscopy.
    Zhang L; Small GW; Arnold MA
    Anal Chem; 2002 Aug; 74(16):4097-108. PubMed ID: 12199580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scattering orthogonalization of near-infrared spectra for analysis of pharmaceutical tablets.
    Shi Z; Anderson CA
    Anal Chem; 2009 Feb; 81(4):1389-96. PubMed ID: 19161299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scatter correction of transmission near-infrared spectra by photon migration data: quantitative analysis of solids.
    Abrahamsson C; Löwgren A; Strömdahl B; Svensson T; Andersson-Engels S; Johansson J; Folestad S
    Appl Spectrosc; 2005 Nov; 59(11):1381-7. PubMed ID: 16316516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A refractometry-based glucose analysis of body fluids.
    Zirk K; Poetzschke H
    Med Eng Phys; 2007 May; 29(4):449-58. PubMed ID: 16877023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectroscopic quantitative analysis of blood glucose by Fourier transform infrared spectroscopy with an attenuated total reflection prism.
    Kajiwara K; Fukushima H; Kishikawa H; Nishida K; Hashiguchi Y; Sakakida M; Uehara M; Shichiri M
    Med Prog Technol; 1992; 18(3):181-9. PubMed ID: 1484514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time update of calibration model for better monitoring of batch processes using spectroscopy.
    Kornmann H; Valentinotti S; Marison I; von Stockar U
    Biotechnol Bioeng; 2004 Sep; 87(5):593-601. PubMed ID: 15352057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose quantification in dried-down nanoliter samples using mid-infrared attenuated total reflection spectroscopy.
    Diessel E; Willmann S; Kamphaus P; Kurte R; Damm U; Heise HM
    Appl Spectrosc; 2004 Apr; 58(4):442-50. PubMed ID: 15104814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracting chemical information from spectral data with multiplicative light scattering effects by optical path-length estimation and correction.
    Chen ZP; Morris J; Martin E
    Anal Chem; 2006 Nov; 78(22):7674-81. PubMed ID: 17105158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable laser diode system for noninvasive blood glucose measurements.
    Olesberg JT; Arnold MA; Mermelstein C; Schmitz J; Wagner J
    Appl Spectrosc; 2005 Dec; 59(12):1480-4. PubMed ID: 16390586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy.
    Tewari JC; Dixit V; Cho BK; Malik KA
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1119-27. PubMed ID: 18424176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Ways to improve measurement accuracy of blood glucose sensing by mid-infrared spectroscopy].
    Wang Y; Li N; Xu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):688-91. PubMed ID: 16856417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Approach for non-destructive pigment analysis in model liquids and carrots by means of time-of-flight and multi-wavelength remittance readings.
    Zude M; Spinelli L; Torricelli A
    Anal Chim Acta; 2008 Aug; 623(2):204-12. PubMed ID: 18620925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced nonlinear approaches for predicting the ingredient composition in compound feedingstuffs by near-infrared reflection spectroscopy.
    Pérez-Marín D; Garrido-Varo A; Guerrero JE; Fearn T; Davies AM
    Appl Spectrosc; 2008 May; 62(5):536-41. PubMed ID: 18498695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selectivity for glucose, glucose-6-phosphate, and pyruvate in ternary mixtures from the multivariate analysis of near-infrared spectra.
    Liu L; Arnold MA
    Anal Bioanal Chem; 2009 Jan; 393(2):669-77. PubMed ID: 19009286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Study of net analyte signal with near-infrared spectra for quantitative analysis].
    Liu R; Lü LN; Chen WL; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Sep; 24(9):1042-6. PubMed ID: 15762518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Near infrared spectroscopy assessment of the glucose solution processed by ultrasonic cavitation.
    Saiga N; Hamada C; Ikeda J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e101-4. PubMed ID: 16860361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of glucose and ethanol in bioethanol production by near infrared spectroscopy and chemometrics.
    Liebmann B; Friedl A; Varmuza K
    Anal Chim Acta; 2009 May; 642(1-2):171-8. PubMed ID: 19427473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physics-based multiplicative scatter correction approaches for improving the performance of calibration models.
    Thennadil SN; Martens H; Kohler A
    Appl Spectrosc; 2006 Mar; 60(3):315-21. PubMed ID: 16608575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.