These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 16014037)

  • 1. Protease activity of plasma hemopexin.
    Bakker WW; Borghuis T; Harmsen MC; van den Berg A; Kema IP; Niezen KE; Kapojos JJ
    Kidney Int; 2005 Aug; 68(2):603-10. PubMed ID: 16014037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin.
    Cheung PK; Klok PA; Baller JF; Bakker WW
    Kidney Int; 2000 Apr; 57(4):1512-20. PubMed ID: 10760087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered activity of plasma hemopexin in patients with minimal change disease in relapse.
    Bakker WW; van Dael CM; Pierik LJ; van Wijk JA; Nauta J; Borghuis T; Kapojos JJ
    Pediatr Nephrol; 2005 Oct; 20(10):1410-5. PubMed ID: 16079987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is 100KF an isoform of hemopexin? Immunochemical characterization of the vasoactive plasma factor 100KF.
    Cheung PK; Stulp B; Immenschuh S; Borghuis T; Baller JF; Bakker WW
    J Am Soc Nephrol; 1999 Aug; 10(8):1700-8. PubMed ID: 10446937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impairment of endothelial and subendothelial sites by a circulating plasma factor associated with minimal change disease.
    Cheung PK; Baller JF; Bakker WW
    Nephrol Dial Transplant; 1996 Nov; 11(11):2185-91. PubMed ID: 8941577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-dependent injury by a human plasma factor associated with minimal change disease.
    Cheung PK; Baller JF; Bakker WW
    Pediatr Nephrol; 1998 Aug; 12(6):452-8. PubMed ID: 9745867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of hemopexin by TNF-alpha stimulated human mesangial cells.
    Kapojos JJ; van den Berg A; van Goor H; te Loo MW; Poelstra K; Borghuis T; Bakker WW
    Kidney Int; 2003 May; 63(5):1681-6. PubMed ID: 12675843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimal change-like glomerular alterations induced by a human plasma factor.
    Cheung PK; Klok PA; Bakker WW
    Nephron; 1996; 74(3):586-93. PubMed ID: 8938686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of plasma hemopexin activity by stimulated endothelial or mesangial cells.
    Kapojos JJ; Poelstra K; Borghuis T; Banas B; Bakker WW
    Nephron Physiol; 2004; 96(1):P1-10. PubMed ID: 14752238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mineralocorticoid and angiotensin II receptor blockers on proteinuria and glomerular podocyte protein expression in a model of minimal change nephrotic syndrome.
    Fukuda A; Fujimoto S; Iwatsubo S; Kawachi H; Kitamura K
    Nephrology (Carlton); 2010 Apr; 15(3):321-6. PubMed ID: 20470301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Minimal change nephrotic syndrome: Pathogenesis, pathophysiology and therapy].
    Wakui H; Komatsuda A
    Nihon Rinsho; 2006 Feb; 64 Suppl 2():408-12. PubMed ID: 16523923
    [No Abstract]   [Full Text] [Related]  

  • 12. Recent insights into the pathogenesis of nephrotic syndrome.
    Certikova-Chabova V; Tesar V
    Minerva Med; 2013 Jun; 104(3):333-47. PubMed ID: 23748287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminin in glomerular basement membranes of aminonucleoside nephrotic rats. Increased proteinuria induced by antilaminin immunoglobulin G.
    Abrahamson DR; Hein A; Caulfield JP
    Lab Invest; 1983 Jul; 49(1):38-47. PubMed ID: 6865329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume regulation in children with early relapse of minimal-change nephrosis with or without hypovolaemic symptoms.
    Vande Walle JG; Donckerwolcke RA; van Isselt JW; Derkx FH; Joles JA; Koomans HA
    Lancet; 1995 Jul; 346(8968):148-52. PubMed ID: 7603230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal function in rats with unilateral proteinuria produced by renal perfusion with aminonucleoside.
    Chandra M; Hoyer JR; Lewy JE
    Pediatr Res; 1981 Apr; 15(4 Pt 1):340-4. PubMed ID: 7220138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the plasma kinin-generating system in children with the minimal lesion, idiopathic nephrotic syndrome.
    Kallen RJ; Lee SK
    Pediatr Res; 1975 Sep; 9(9):705-9. PubMed ID: 53808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of glomerular polyanion in vitro induced by mononuclear blood cells from patients with minimal-change nephrotic syndrome.
    Bakker WW; van Luijk WH; Hené RJ; Desmit EM; van der Hem GK; Vos JT
    Am J Nephrol; 1986; 6(2):107-11. PubMed ID: 2422934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alternative view of the proposed alternative activities of hemopexin.
    Mauk MR; Smith A; Mauk AG
    Protein Sci; 2011 May; 20(5):791-805. PubMed ID: 21404362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased glomerular thromboxane synthesis as a possible cause of proteinuria in experimental nephrosis.
    Remuzzi G; Imberti L; Rossini M; Morelli C; Carminati C; Cattaneo GM; Bertani T
    J Clin Invest; 1985 Jan; 75(1):94-101. PubMed ID: 4038407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of recombinant CanPIs with Helicoverpa armigera gut proteases reveals their processing patterns, stability and efficiency.
    Mishra M; Tamhane VA; Khandelwal N; Kulkarni MJ; Gupta VS; Giri AP
    Proteomics; 2010 Aug; 10(15):2845-57. PubMed ID: 20517884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.