BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 16014343)

  • 1. A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis.
    Rubio-Texeira M
    FEMS Yeast Res; 2005 Dec; 5(12):1115-28. PubMed ID: 16014343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary aspects of a genetic network: studying the lactose/galactose regulon of Kluyveromyces lactis.
    Anders A; Breunig KD
    Methods Mol Biol; 2011; 734():259-77. PubMed ID: 21468994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis.
    Pannala VR; Bhartiya S; Venkatesh KV
    FEBS J; 2010 Jul; 277(14):2987-3002. PubMed ID: 20528923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endless versatility in the biotechnological applications of Kluyveromyces LAC genes.
    Rubio-Texeira M
    Biotechnol Adv; 2006; 24(2):212-25. PubMed ID: 16289464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GAL4 of Saccharomyces cerevisiae activates the lactose-galactose regulon of Kluyveromyces lactis and creates a new phenotype: glucose repression of the regulon.
    Riley MI; Hopper JE; Johnston SA; Dickson RC
    Mol Cell Biol; 1987 Feb; 7(2):780-6. PubMed ID: 3102945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.
    Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J
    Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative model for Gal4p-mediated expression of the galactose/melibiose regulon in Saccharomyces cerevisiae.
    Venkatesh KV; Bhat PJ; Kumar RA; Doshi P
    Biotechnol Prog; 1999; 15(1):51-7. PubMed ID: 9933513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetics and molecular physiology of the yeast Kluyveromyces lactis.
    Schaffrath R; Breunig KD
    Fungal Genet Biol; 2000 Aug; 30(3):173-90. PubMed ID: 11035939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae.
    Apostu R; Mackey MC
    J Theor Biol; 2012 Jan; 293():219-35. PubMed ID: 22024631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon.
    Zenke FT; Zachariae W; Lunkes A; Breunig KD
    Mol Cell Biol; 1993 Dec; 13(12):7566-76. PubMed ID: 8246973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome.
    Snoek IS; Steensma HY
    FEMS Yeast Res; 2006 May; 6(3):393-403. PubMed ID: 16630279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis.
    Rodicio R; Heinisch JJ
    Yeast; 2013 May; 30(5):165-77. PubMed ID: 23576126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lactose-galactose regulon of Kluyveromyces lactis.
    Dickson RC; Riley MI
    Biotechnology; 1989; 13():19-40. PubMed ID: 2679924
    [No Abstract]   [Full Text] [Related]  

  • 14. The pheromone response pathway of Kluyveromyces lactis.
    Coria R; Kawasaki L; Torres-Quiroz F; Ongay-Larios L; Sánchez-Paredes E; Velázquez-Zavala N; Navarro-Olmos R; Rodríguez-González M; Aguilar-Corachán R; Coello G
    FEMS Yeast Res; 2006 May; 6(3):336-44. PubMed ID: 16630274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.
    Herwig C; Von Stockar U
    Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose represses the lactose-galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1- dependent pathway that modulates galactokinase (GAL1) gene expression.
    Dong J; Dickson RC
    Nucleic Acids Res; 1997 Sep; 25(18):3657-64. PubMed ID: 9278487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous complementation of the Klaac null mutation of Kluyveromyces lactis by the Saccharomyces cerevisiae AAC3 gene encoding the ADP/ATP carrier.
    Fontanesi F; Viola AM; Ferrero I
    FEMS Yeast Res; 2006 May; 6(3):414-20. PubMed ID: 16630281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoregulation of GAL4 transcription is essential for rapid growth of Kluyveromyces lactis on lactose and galactose.
    Czyz M; Nagiec MM; Dickson RC
    Nucleic Acids Res; 1993 Sep; 21(18):4378-82. PubMed ID: 8414996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability analysis of the GAL regulatory network in Saccharomyces cerevisiae and Kluyveromyces lactis.
    Kulkarni VV; Kareenhalli V; Malakar P; Pao LY; Safonov MG; Viswanathan GA
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S43. PubMed ID: 20122217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoregulation of regulatory proteins is key for dynamic operation of GAL switch in Saccharomyces cerevisiae.
    Ruhela A; Verma M; Edwards JS; Bhat PJ; Bhartiya S; Venkatesh KV
    FEBS Lett; 2004 Oct; 576(1-2):119-26. PubMed ID: 15474022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.