BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 1601446)

  • 1. Confidence bounds on respiratory mechanical properties estimated from transfer versus input impedance in humans versus dogs.
    Lutchen KR; Jackson AC
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):644-51. PubMed ID: 1601446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of frequency range and input impedance on airway-tissue separation implied from transfer impedance.
    Lutchen KR; Everett JR; Jackson AC
    J Appl Physiol (1985); 1993 Mar; 74(3):1089-99. PubMed ID: 8482647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of transfer impedance measurements for clinical assessment of lung mechanics.
    Lutchen KR; Sullivan A; Arbogast FT; Celli BR; Jackson AC
    Am J Respir Crit Care Med; 1998 Feb; 157(2):435-46. PubMed ID: 9476855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliability of parameter estimates from models applied to respiratory impedance data.
    Lutchen KR; Jackson AC
    J Appl Physiol (1985); 1987 Feb; 62(2):403-13. PubMed ID: 3558200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of respiratory input impedance in healthy infants.
    Jackson AC; Neff KM; Dorkin HL; Lutchen KR
    Pediatr Pulmonol; 1996 Dec; 22(6):364-75. PubMed ID: 9016470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: applications to respiratory mechanics.
    Suki B; Lutchen KR
    IEEE Trans Biomed Eng; 1992 Nov; 39(11):1142-51. PubMed ID: 1487277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonstatistical approach to estimating confidence intervals about model parameters: application to respiratory mechanics.
    Bates JH; Lauzon AM
    IEEE Trans Biomed Eng; 1992 Jan; 39(1):94-100. PubMed ID: 1572688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological interpretations based on lumped element models fit to respiratory impedance data: use of forward-inverse modeling.
    Lutchen KR; Costa KD
    IEEE Trans Biomed Eng; 1990 Nov; 37(11):1076-86. PubMed ID: 2276755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal frequency range to analyze respiratory transfer impedance with six-element model.
    Tomalak W; Peslin R; Duvivier C; Gallina C
    J Appl Physiol (1985); 1993 Dec; 75(6):2656-64. PubMed ID: 8125886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data.
    Semenenko VA; Li XA
    Phys Med Biol; 2008 Feb; 53(3):737-55. PubMed ID: 18199912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confidence intervals of respiratory mechanical properties derived from transfer impedance.
    Rotger M; Peslin R; Oostveen E; Gallina C
    J Appl Physiol (1985); 1991 Jun; 70(6):2432-8. PubMed ID: 1885436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of estimating stochastic lung tissue heterogeneity from pulmonary impedance spectra: a forward-inverse modeling study.
    Kaczka DW; Massa CB; Simon BA
    Ann Biomed Eng; 2007 Oct; 35(10):1722-38. PubMed ID: 17558554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory input and transfer mechanical impedances in patients with chronic obstructive pulmonary disease.
    Ying Y; Peslin R; Duvivier C; Gallina C; Felicio da Silva J
    Eur Respir J; 1990 Nov; 3(10):1186-92. PubMed ID: 2090482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative value of respiratory input and transfer impedances in field studies.
    Peslin R; Pham QT; Teculescu D; Gallina C; Duvivier C
    Bull Eur Physiopathol Respir; 1987; 23(1):37-42. PubMed ID: 3593995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multimedia environmental model of chemical distribution: fate, transport, and uncertainty analysis.
    Luo Y; Yang X
    Chemosphere; 2007 Jan; 66(8):1396-407. PubMed ID: 17095045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of an ethanol pharmacokinetic model.
    Whitmire D; Cornelius L; Whitmire P
    Alcohol Clin Exp Res; 2002 Oct; 26(10):1484-93. PubMed ID: 12394281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability.
    Pal S; Langenderfer JE; Stowe JQ; Laz PJ; Petrella AJ; Rullkoetter PJ
    Ann Biomed Eng; 2007 Sep; 35(9):1632-42. PubMed ID: 17546504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.