BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16015285)

  • 21. Determination of the substrate binding mode to the active site iron of (S)-2-hydroxypropylphosphonic acid epoxidase using 17O-enriched substrates and substrate analogues.
    Yan F; Moon SJ; Liu P; Zhao Z; Lipscomb JD; Liu A; Liu HW
    Biochemistry; 2007 Nov; 46(44):12628-38. PubMed ID: 17927218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of the polyketide cyclase AknH with bound substrate and product analogue: implications for catalytic mechanism and product stereoselectivity.
    Kallio P; Sultana A; Niemi J; Mäntsälä P; Schneider G
    J Mol Biol; 2006 Mar; 357(1):210-20. PubMed ID: 16414075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectroscopic and electronic structure studies of the role of active site interactions in the decarboxylation reaction of alpha-keto acid-dependent dioxygenases.
    Neidig ML; Brown CD; Kavana M; Choroba OW; Spencer JB; Moran GR; Solomon EI
    J Inorg Biochem; 2006 Dec; 100(12):2108-16. PubMed ID: 17070917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational changes observed in enzyme crystal structures upon substrate binding.
    Gutteridge A; Thornton J
    J Mol Biol; 2005 Feb; 346(1):21-8. PubMed ID: 15663924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphonoformate: a minimal transition state analogue inhibitor of the fosfomycin resistance protein, FosA.
    Rigsby RE; Rife CL; Fillgrove KL; Newcomer ME; Armstrong RN
    Biochemistry; 2004 Nov; 43(43):13666-73. PubMed ID: 15504029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis.
    Koskiniemi H; Metsä-Ketelä M; Dobritzsch D; Kallio P; Korhonen H; Mäntsälä P; Schneider G; Niemi J
    J Mol Biol; 2007 Sep; 372(3):633-48. PubMed ID: 17669423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural adaptation of an interacting non-native C-terminal helical extension revealed in the crystal structure of NAD+ synthetase from Bacillus anthracis.
    McDonald HM; Pruett PS; Deivanayagam C; Protasevich II; Carson WM; DeLucas LJ; Brouillette WJ; Brouillette CG
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):891-905. PubMed ID: 17642516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The crystal structure of an LLL-configured depsipeptide substrate analogue bound to isopenicillin N synthase.
    Ge W; Clifton IJ; Stok JE; Adlington RM; Baldwin JE; Rutledge PJ
    Org Biomol Chem; 2010 Jan; 8(1):122-7. PubMed ID: 20024142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into cephamycin biosynthesis: the crystal structure of CmcI from Streptomyces clavuligerus.
    Oster LM; Lester DR; Terwisscha van Scheltinga A; Svenda M; van Lun M; Généreux C; Andersson I
    J Mol Biol; 2006 Apr; 358(2):546-58. PubMed ID: 16527306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
    Vardakou M; Dumon C; Murray JW; Christakopoulos P; Weiner DP; Juge N; Lewis RJ; Gilbert HJ; Flint JE
    J Mol Biol; 2008 Feb; 375(5):1293-305. PubMed ID: 18078955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dioxygen activation at non-heme iron: insights from rapid kinetic studies.
    Korendovych IV; Kryatov SV; Rybak-Akimova EV
    Acc Chem Res; 2007 Jul; 40(7):510-21. PubMed ID: 17521158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase: insight into the active site and catalytic mechanism of a novel decarboxylation reaction.
    Martynowski D; Eyobo Y; Li T; Yang K; Liu A; Zhang H
    Biochemistry; 2006 Sep; 45(35):10412-21. PubMed ID: 16939194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase.
    Pilak O; Mamat B; Vogt S; Hagemeier CH; Thauer RK; Shima S; Vonrhein C; Warkentin E; Ermler U
    J Mol Biol; 2006 May; 358(3):798-809. PubMed ID: 16540118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase.
    Martinez Molina D; Wetterholm A; Kohl A; McCarthy AA; Niegowski D; Ohlson E; Hammarberg T; Eshaghi S; Haeggström JZ; Nordlund P
    Nature; 2007 Aug; 448(7153):613-6. PubMed ID: 17632546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of tRNA-guanine transglycosylase (TGT) in complex with novel and potent inhibitors unravel pronounced induced-fit adaptations and suggest dimer formation upon substrate binding.
    Stengl B; Meyer EA; Heine A; Brenk R; Diederich F; Klebe G
    J Mol Biol; 2007 Jul; 370(3):492-511. PubMed ID: 17524419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications.
    Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG
    Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein environment facilitates O2 binding in non-heme iron enzyme. An insight from ONIOM calculations on isopenicillin N synthase (IPNS).
    Lundberg M; Morokuma K
    J Phys Chem B; 2007 Aug; 111(31):9380-9. PubMed ID: 17637052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J
    J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation.
    Faust A; Niefind K; Hummel W; Schomburg D
    J Mol Biol; 2007 Mar; 367(1):234-48. PubMed ID: 17234209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The 1.9 A resolution structure of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase, a potential drug target.
    Henriksson LM; Björkelid C; Mowbray SL; Unge T
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):807-13. PubMed ID: 16790937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.