BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 16015493)

  • 1. An automated robotic approach with redundant navigation for minimal invasive extended transsphenoidal skull base surgery.
    Bumm K; Wurm J; Rachinger J; Dannenmann T; Bohr C; Fahlbusch R; Iro H; Nimsky C
    Minim Invasive Neurosurg; 2005 Jun; 48(3):159-64. PubMed ID: 16015493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of a hexapod-based robotic system for extended endoscope-assisted transsphenoidal skull base surgery.
    Nimsky Ch; Rachinger J; Iro H; Fahlbusch R
    Minim Invasive Neurosurg; 2004 Feb; 47(1):41-6. PubMed ID: 15100931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased safety in robotic paranasal sinus and skull base surgery with redundant navigation and automated registration.
    Wurm J; Dannenmann T; Bohr C; Iro H; Bumm K
    Int J Med Robot; 2005 Sep; 1(3):42-8. PubMed ID: 17518389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surgical application of a new robotic system for paranasal sinus surgery.
    Steinhart H; Bumm K; Wurm J; Vogele M; Iro H
    Ann Otol Rhinol Laryngol; 2004 Apr; 113(4):303-9. PubMed ID: 15112974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.
    Caversaccio M; Langlotz F; Nolte LP; Häusler R
    Acta Otolaryngol; 2007 Apr; 127(4):403-7. PubMed ID: 17453461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser surface registration for lateral skull base surgery.
    Marmulla R; Eggers G; Mühling J
    Minim Invasive Neurosurg; 2005 Jun; 48(3):181-5. PubMed ID: 16015497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic neurological surgery applications: accuracy and consistency or pure fantasy?
    Eljamel MS
    Stereotact Funct Neurosurg; 2009; 87(2):88-93. PubMed ID: 19223694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Computer-assisted surgical navigation with a dynamic mobile framework for the nasal fossae, sinuses and base of the skull].
    Caversaccio M; Lädrach K; Bächler R; Schroth G; Nolte LP; Häusler R
    Ann Otolaryngol Chir Cervicofac; 1998 Nov; 115(5):253-8. PubMed ID: 9881171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated system for planning, navigation and robotic assistance for skull base surgery.
    Xia T; Baird C; Jallo G; Hayes K; Nakajima N; Hata N; Kazanzides P
    Int J Med Robot; 2008 Dec; 4(4):321-30. PubMed ID: 18803337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robotic and imaging in urological surgery.
    Teber D; Baumhauer M; Guven EO; Rassweiler J
    Curr Opin Urol; 2009 Jan; 19(1):108-13. PubMed ID: 19057226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic navigation improves minimally invasive robot-assisted lung brachytherapy.
    Lin AW; Trejos AL; Mohan S; Bassan H; Kashigar A; Patel RV; Malthaner RA
    Comput Aided Surg; 2008 Mar; 13(2):114-23. PubMed ID: 18317960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new mechatronic assistance system for the neurosurgical operating theatre: implementation, assessment of accuracy and application concepts.
    Rachinger J; Bumm K; Wurm J; Bohr C; Nissen U; Dannenmann T; Buchfelder M; Iro H; Nimsky C
    Stereotact Funct Neurosurg; 2007; 85(5):249-55. PubMed ID: 17534138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic endoscopic surgery of the skull base: a novel surgical approach.
    Hanna EY; Holsinger C; DeMonte F; Kupferman M
    Arch Otolaryngol Head Neck Surg; 2007 Dec; 133(12):1209-14. PubMed ID: 18086961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Navigation as a quality management tool in cochlear implant surgery.
    Schipper J; Aschendorff A; Arapakis I; Klenzner T; Teszler CB; Ridder GJ; Laszig R
    J Laryngol Otol; 2004 Oct; 118(10):764-70. PubMed ID: 15550181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transoral robotic surgery of the skull base: a cadaver and feasibility study.
    Lee JY; O'Malley BW; Newman JG; Weinstein GS; Lega B; Diaz J; Grady MS
    ORL J Otorhinolaryngol Relat Spec; 2010; 72(4):181-7. PubMed ID: 20668391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system.
    Antypas C; Pantelis E
    Phys Med Biol; 2008 Sep; 53(17):4697-718. PubMed ID: 18695294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic skull base surgery via supraorbital keyhole approach: a cadaveric study.
    Hong WC; Tsai JC; Chang SD; Sorger JM
    Neurosurgery; 2013 Jan; 72 Suppl 1():33-8. PubMed ID: 23254810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application accuracy of the NeuroMate robot--A quantitative comparison with frameless and frame-based surgical localization systems.
    Li QH; Zamorano L; Pandya A; Perez R; Gong J; Diaz F
    Comput Aided Surg; 2002; 7(2):90-8. PubMed ID: 12112718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The analysis of intraoperative neurosurgical instrument movement using a navigation log-file.
    Woerdeman PA; Willems PW; Noordmans HJ; van der Sprenkel JW
    Int J Med Robot; 2006 Jun; 2(2):139-45. PubMed ID: 17520624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic anterior and midline skull base surgery: preclinical investigations.
    O'Malley BW; Weinstein GS
    Int J Radiat Oncol Biol Phys; 2007; 69(2 Suppl):S125-8. PubMed ID: 17848280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.