These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16018462)

  • 1. The significance of high-order resonances of spherical bubbles to the acoustic response of fish with swimbladders.
    Barr R; Coombs RF
    J Acoust Soc Am; 2005 Jun; 117(6):3589-99. PubMed ID: 16018462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Resonant acoustic scattering by swimbladder-bearing fish" [J. Acoust. Soc. Am. 64, 571-580 (1978)] (L).
    Baik K
    J Acoust Soc Am; 2013 Jan; 133(1):5-8. PubMed ID: 23297876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic backscattering observations from non-spherical gas bubbles with ka between 0.03 and 4.4.
    Padilla AM; Weber TC
    J Acoust Soc Am; 2021 Apr; 149(4):2504. PubMed ID: 33940916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant acoustic scattering by two spherical bubbles.
    Valier-Brasier T; Conoir JM
    J Acoust Soc Am; 2019 Jan; 145(1):301. PubMed ID: 30710938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity resonances of water-entrained air bubbles near acoustically reflecting boundaries.
    van 't Wout E; Feuillade C
    J Acoust Soc Am; 2021 Apr; 149(4):2477. PubMed ID: 33940878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target phase: an extra dimension for fish and plankton target identification.
    Barr R; Coombs RF
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1358-71. PubMed ID: 16240797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation.
    Zhang Y; Zhang Y; Li S
    Ultrason Sonochem; 2017 Mar; 35(Pt A):431-439. PubMed ID: 27818004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-resonance scattering from arrays of artificial fish swimbladders.
    Nero RW; Feuillade C; Thompson CH; Love RH
    J Acoust Soc Am; 2007 Jan; 121(1):132-43. PubMed ID: 17297769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-domain simulation of acoustic wave scattering and internal propagation from a gas bubble of various shapes.
    Hou J; Zheng ZC; Allen JS
    J Acoust Soc Am; 2023 Mar; 153(3):1468. PubMed ID: 37002085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field.
    Ma X; Xing T; Huang B; Li Q; Yang Y
    Ultrason Sonochem; 2018 Jan; 40(Pt A):480-487. PubMed ID: 28946449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive resonant scattering by a cluster of air bubbles in water.
    Skaropoulos NC; Yagridou HD; Chrissoulidis DP
    J Acoust Soc Am; 2003 Jun; 113(6):3001-11. PubMed ID: 12822771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collapse and rebound of a gas-filled spherical bubble immersed in a diagnostic ultrasonic field.
    Aymé-Bellegarda EJ
    J Acoust Soc Am; 1990 Aug; 88(2):1054-60. PubMed ID: 2212284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for estimating time-dependent acoustic cross-sections of bubbles and bubble clouds prior to the steady state.
    Clarke JW; Leighton TG
    J Acoust Soc Am; 2000 Apr; 107(4):1922-9. PubMed ID: 10790017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-frequency acoustic technique for bubble resonant oscillation studies.
    Ohsaka K; Trinh EH
    J Acoust Soc Am; 2000 Mar; 107(3):1346-51. PubMed ID: 10738788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic backscattering by Hawaiian lutjanid snappers. 1. Target strength and swimbladder characteristics.
    Benoit-Bird KJ; Au WW; Kelley CD
    J Acoust Soc Am; 2003 Nov; 114(5):2757-66. PubMed ID: 14650010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2013 May; 20(3):815-9. PubMed ID: 23187064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesopelagic fish gas bladder elongation, as estimated from wideband acoustic backscattering measurements.
    Khodabandeloo B; Ona E; Pedersen G; Korneliussen R; Melle W; Klevjer T
    J Acoust Soc Am; 2022 Jun; 151(6):4073. PubMed ID: 35778196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.