These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16018466)

  • 41. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
    de Jong JA; Wijnant YH; de Boer A
    J Acoust Soc Am; 2014 Mar; 135(3):1149-58. PubMed ID: 24606258
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Lamb wave source based on the resonant cavity of phononic-crystal plates.
    Sun JH; Wu TT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):121-8. PubMed ID: 19213638
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of a stack on Rayleigh streaming cells investigated by laser Doppler velocimetry for application to thermoacoustic devices (L).
    Moreau S; Bailliet H; Valière JC
    J Acoust Soc Am; 2009 Jun; 125(6):3514-7. PubMed ID: 19507931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatiotemporal patterns corresponding to phase synchronization and generalized synchronization states of thermoacoustic instability.
    Pawar SA; Raghunath MP; K Valappil R; Krishnan A; Manoj K; Sujith RI
    Chaos; 2024 May; 34(5):. PubMed ID: 38717395
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stationary velocity and pressure gradients in a thermoacoustic stack.
    Waxler R
    J Acoust Soc Am; 2001 Jun; 109(6):2739-50. PubMed ID: 11425116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitigation of limit cycle oscillations in a turbulent thermoacoustic system via delayed acoustic self-feedback.
    Sahay A; Kushwaha A; Pawar SA; P R M; Dhadphale JM; Sujith RI
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097926
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Performance measurements on a thermoacoustic refrigerator driven at high amplitudes.
    Poese ME; Garrett SL
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2480-6. PubMed ID: 10830371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Test-bench for the experimental characterization of porous material used in thermoacoustic refrigerators.
    Poignand G; Olivier C; Penelet G
    J Acoust Soc Am; 2022 Nov; 152(5):2804. PubMed ID: 36456285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A computational flow-induced noise and time-reversal technique for analysing aeroacoustic sources.
    Croaker P; Mimani A; Doolan C; Kessissoglou N
    J Acoust Soc Am; 2018 Apr; 143(4):2301. PubMed ID: 29716259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal modeling and performance analysis of a thermoacoustic refrigerator.
    Holmberg DG; Chen GS; Lin HT; Wo AM
    J Acoust Soc Am; 2003 Aug; 114(2):782-91. PubMed ID: 12942961
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine.
    Abd El-Rahman AI; Abdel-Rahman E
    J Acoust Soc Am; 2014 Aug; 136(2):649-58. PubMed ID: 25096100
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-amplitude thermoacoustic effects in a single pore.
    Petculescu G; Wilen LA
    J Acoust Soc Am; 2001 Mar; 109(3):942-8. PubMed ID: 11303946
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Graphene-Based Thermoacoustic Sound Source.
    Qiao Y; Gou G; Wu F; Jian J; Li X; Hirtz T; Zhao Y; Zhi Y; Wang F; Tian H; Yang Y; Ren TL
    ACS Nano; 2020 Apr; 14(4):3779-3804. PubMed ID: 32186849
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aeroacoustic response of coaxial wall-mounted Helmholtz resonators in a low-speed wind tunnel.
    Slaton WV; Nishikawa A
    J Acoust Soc Am; 2015 Jan; 137(1):253-60. PubMed ID: 25618056
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Parallel capillary-tube-based extension of thermoacoustic theory for random porous media.
    Roh HS; Raspet R; Bass HE
    J Acoust Soc Am; 2007 Mar; 121(3):1413-22. PubMed ID: 17407878
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acoustic characteristics of looped-tube thermoacoustic refrigerators with external and in-built acoustic drivers: A comparative study.
    Chen G; Xu J
    J Acoust Soc Am; 2021 Dec; 150(6):4406. PubMed ID: 34972271
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The behavior of standing waves near the end of an open pipe with low mean flow.
    Moore TR; Kellison MS; Coyle WL
    JASA Express Lett; 2023 May; 3(5):. PubMed ID: 37191974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Closed-loop control of flow-induced sound in a flow duct with downstream resonant cavities.
    Lu ZB; Halim D; Cheng L
    J Acoust Soc Am; 2013 Mar; 133(3):1468-79. PubMed ID: 23464018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.