These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16018466)

  • 61. Closed-loop control of flow-induced sound in a flow duct with downstream resonant cavities.
    Lu ZB; Halim D; Cheng L
    J Acoust Soc Am; 2013 Mar; 133(3):1468-79. PubMed ID: 23464018
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Behaviour of a premixed flame subjected to acoustic oscillations.
    Qureshi SR; Khan WA; Prosser R
    PLoS One; 2013; 8(12):e81659. PubMed ID: 24376501
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Modeling of finite amplitude acoustic waves in closed cavities using the Galerkin method.
    Erickson RR; Zinn BT
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1863-70. PubMed ID: 12703698
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Coherence resonance and stochastic bifurcation behaviors of simplified standing-wave thermoacoustic systems.
    Li X; Zhao D; Shi B
    J Acoust Soc Am; 2019 Feb; 145(2):692. PubMed ID: 30823803
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor.
    Kasthuri P; Pavithran I; Pawar SA; Sujith RI; Gejji R; Anderson W
    Chaos; 2019 Oct; 29(10):103115. PubMed ID: 31675825
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system.
    Singh S; Kumar Dutta A; Dhadphale JM; Roy A; Sujith RI; Chaudhuri S
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097956
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions.
    Roy S; Hua JC; Barnhill W; Gunaratne GH; Gord JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013001. PubMed ID: 25679702
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modeling of thermoacoustic systems using the nonlinear frequency domain method.
    de Jong JA; Wijnant YH; Wilcox D; de Boer A
    J Acoust Soc Am; 2015 Sep; 138(3):1241-52. PubMed ID: 26428763
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optimizing thermoacoustic regenerators for maximum amplification of acoustic power.
    Holzinger T; Emmert T; Polifke W
    J Acoust Soc Am; 2014 Nov; 136(5):2432-40. PubMed ID: 25373945
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.
    Luo EC; Dai W; Zhang Y; Ling H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.
    Mitri FG
    Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Energy Transform and Initial Acoustic Pressure Distribution in Microwave-induced Thermoacoustic Tomography.
    Yan J; Tao C; Wu S
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():1521-4. PubMed ID: 17282491
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding.
    Lin PC; I L
    Phys Rev E; 2016 Feb; 93(2):021101. PubMed ID: 26986279
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Operation map of a traveling-wave thermoacoustic electric generator with variable resistive-capacitive electric loads.
    Ibrahim AH; Elbeltagy K; Ramadan I; Ismail OA; Serag-Eldin MA; Abdel-Rahman E
    J Acoust Soc Am; 2024 Sep; 156(3):1757-1768. PubMed ID: 39283154
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Low temperature difference thermoacoustic prime mover with asymmetric multi-stage loop configuration.
    Jin T; Yang R; Wang Y; Feng Y; Tang K
    Sci Rep; 2017 Aug; 7(1):7665. PubMed ID: 28794455
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nonlinear standing waves in 2-D acoustic resonators.
    Cervenka M; Bednarik M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e773-6. PubMed ID: 16780910
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Acoustic waves generated by pulsed microwaves in viscoelastic rods: modeling and experimental verification.
    Bacon C; Guilliorit E; Hosten B; Chimenti DE
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1398-407. PubMed ID: 11572350
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Aeroacoustic performance of a seal vibrissa shaped cylinder.
    Smith TA; Chen G; Zang B
    J Acoust Soc Am; 2023 Sep; 154(3):1585-1595. PubMed ID: 37699104
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Resonance control of acoustic focusing systems through an environmental reference table and impedance spectroscopy.
    Kalb DM; Olson RJ; Sosik HM; Woods TA; Graves SW
    PLoS One; 2018; 13(11):e0207532. PubMed ID: 30427942
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Continuous-wave, singly resonant parametric oscillator-based mid-infrared optical vortex source.
    Aadhi A; Sharma V; Singh RP; Samanta GK
    Opt Lett; 2017 Sep; 42(18):3674-3677. PubMed ID: 28914930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.