These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16018468)

  • 1. Forced responses of solid axially polarized piezoelectric ceramic finite cylinders with internal losses.
    Ebenezer DD; Ravichandran K; Ramesh R; Padmanabhan C
    J Acoust Soc Am; 2005 Jun; 117(6):3645-56. PubMed ID: 16018468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact series model of axially polarized hollow piezoelectric ceramic cylinders of finite length.
    Nishamol PA; Ebenezer DD
    J Acoust Soc Am; 2018 Aug; 144(2):1028. PubMed ID: 30180686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of axially polarized piezoelectric cylinders with arbitrary boundary conditions on flat surfaces.
    Ebenezer DD; Ramesh R
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1900-8. PubMed ID: 12703702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact series model of Langevin transducers with internal losses.
    Nishamol PA; Ebenezer DD
    J Acoust Soc Am; 2014 Mar; 135(3):1159-70. PubMed ID: 24606259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of axially polarized piezoelectric ceramic cylindrical shells of finite length with internal losses.
    Ebenezer DD; Abraham P
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1953-60. PubMed ID: 12430807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free and forced vibrations of hollow elastic cylinders of finite length.
    Ebenezer DD; Ravichandran K; Padmanabhan C
    J Acoust Soc Am; 2015 May; 137(5):2927-38. PubMed ID: 25994719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axisymmetric vibration of infinite piezoelectric cylinders using one-dimensional finite elements.
    Buchanan GR; Peddieson JR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(4):459-65. PubMed ID: 18285007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate coupled vibration analysis of a piezoelectric ceramic cylinder by the superposition method.
    Ding W; Bavencoffe M; Lethiecq M
    Ultrasonics; 2021 Aug; 115():106474. PubMed ID: 34082322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibration of infinite piezoelectric cylinders with anisotropic properties using cylindrical finite elements.
    Buchanan GR; Peddieson JR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):291-6. PubMed ID: 18267586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Original 2-D Analytical Model for Investigating Coupled Vibrations of Finite Piezoelectric Resonators.
    Ding W; Bavencoffe M; Lethiecq M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):854-862. PubMed ID: 34727032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical model of mechanically excited piezoelectric unimorph beams.
    Pillai MA; Ebenezer DD; Deenadayalan E
    J Acoust Soc Am; 2017 Aug; 142(2):718. PubMed ID: 28863561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating.
    George J; Ebenezer DD; Bhattacharyya SK
    J Acoust Soc Am; 2010 Oct; 128(4):1712-20. PubMed ID: 20968344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-dependent open-circuit acoustic sensitivity of fluid-filled, coated, radially polarized piezoelectric ceramic cylindrical shells of arbitrary thickness and infinite length.
    Ebenezer DD; Joseph L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jul; 48(4):914-21. PubMed ID: 11477783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation of the homogeneous and forced solutions of a finite length, line-driven, submerged plate.
    DiPerna DT; Blake WK; DiPerna XZ
    J Acoust Soc Am; 2006 Dec; 120(6):3664-71. PubMed ID: 17225394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plane harmonic waves in an infinite piezoelectric plate with dissipation.
    Lee PC; Liu N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Dec; 51(12):1629-38. PubMed ID: 15690723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radial vibration characteristics of spherical piezoelectric transducers.
    Kim JO; Lee JG; Chun HY
    Ultrasonics; 2005 Jun; 43(7):531-7. PubMed ID: 15950027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cable theory for finite length dendritic cylinders with initial and boundary conditions.
    Norman RS
    Biophys J; 1972 Jan; 12(1):25-45. PubMed ID: 5007242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approximated 3-D model of cylinder-shaped piezoceramic elements for transducer design.
    Iula A; Lamberti N; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1056-64. PubMed ID: 18244260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the radial composite piezoelectric ceramic transducer in radial vibration.
    Lin S
    Ultrasonics; 2007 Mar; 46(1):51-9. PubMed ID: 17166538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the exact solution for scattering by an infinite cylinder to the estimation of scattering by a finite cylinder.
    Wang RT; van de Hulst HC
    Appl Opt; 1995 May; 34(15):2811-21. PubMed ID: 21052428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.