These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 16018552)

  • 1. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae.
    Sugiyama M; Ikushima S; Nakazawa T; Kaneko Y; Harashima S
    Biotechniques; 2005 Jun; 38(6):909-14. PubMed ID: 16018552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A polymerase chain reaction-mediated yeast artificial chromosome-splitting technology for generating targeted yeast artificial chromosomes subclones.
    Kim YH; Sugiyama M; Kaneko Y; Fukui K; Kobayashi A; Harashima S
    Methods Mol Biol; 2006; 349():103-15. PubMed ID: 17071977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes.
    Ueda Y; Ikushima S; Sugiyama M; Matoba R; Kaneko Y; Matsubara K; Harashima S
    J Biosci Bioeng; 2012 Jun; 113(6):675-82. PubMed ID: 22382015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of mini-chromosome segregation during mitotic growth by overexpression of YCR041W and its application to chromosome engineering in Saccharomyces cerevisiae.
    Sasano Y; Yamagishi K; Tanikawa M; Nakazawa T; Sugiyama M; Kaneko Y; Harashima S
    J Biosci Bioeng; 2015 May; 119(5):526-31. PubMed ID: 25454064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae.
    Sugiyama M; Nakazawa T; Murakami K; Sumiya T; Nakamura A; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):545-53. PubMed ID: 18677473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional chromosome splitting in Saccharomyces cerevisiae using the homing endonuclease PI-SceI.
    Yamagishi K; Sugiyama M; Kaneko Y; Harashima S
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):699-706. PubMed ID: 18461321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae.
    Sugiyama M; Yamagishi K; Kim YH; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1045-52. PubMed ID: 19685240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and characterization of single-gene chromosomes in Saccharomyces cerevisiae.
    Yamagishi K; Sugiyama M; Kaneko Y; Nishizawa M; Harashima S
    J Biosci Bioeng; 2008 Dec; 106(6):563-7. PubMed ID: 19134552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tools for the study of genome rearrangements in laboratory and industrial yeast strains.
    Lockhart L; Oliver SG; Delneri D
    Yeast; 2002 Mar; 19(5):441-8. PubMed ID: 11921092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Overexpression of Integrated Genes by Copy Number Amplification of a Mini-Yeast Artificial Chromosome.
    Jung HM; Kim YH
    J Microbiol Biotechnol; 2018 May; 28(5):821-825. PubMed ID: 29551023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile and general splitting technology for generating targeted YAC subclones.
    Kim Y; Sugiyama M; Yamagishi K; Kaneko Y; Fukui K; Kobayashi A; Harashima S
    Appl Microbiol Biotechnol; 2005 Nov; 69(1):65-70. PubMed ID: 15864580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical mapping of chromosomes VII and XV of Saccharomyces cerevisiae at 3.5 kb average resolution to allow their complete sequencing.
    Tettelin H; Thierry A; Goffeau A; Dujon B
    Yeast; 1998 May; 14(7):601-16. PubMed ID: 9639307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome-shuffling technique for selected chromosomal segments in Saccharomyces cerevisiae.
    Sugiyama M; Yamamoto E; Mukai Y; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):947-52. PubMed ID: 16505990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae.
    Bidenne C; Blondin B; Dequin S; Vezinhet F
    Curr Genet; 1992 Jul; 22(1):1-7. PubMed ID: 1611665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PCR alone is insufficient for identifying structural modifications to yeast chromosomes.
    Wheeler SL; Khalsa GJ; Nickoloff JA
    Biotechniques; 1999 Feb; 26(2):238-40. PubMed ID: 10023532
    [No Abstract]   [Full Text] [Related]  

  • 16. CRISPR-PCS Protocol for Chromosome Splitting and Splitting Event Detection in
    Sasano Y; Harashima S
    Bio Protoc; 2017 May; 7(10):e2306. PubMed ID: 34541068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus.
    Tamai Y; Momma T; Yoshimoto H; Kaneko Y
    Yeast; 1998 Jul; 14(10):923-33. PubMed ID: 9717238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic control of chromosome stability in the yeast Saccharomyces cerevisiae.
    Kouprina NYu ; Pashina OB; Nikolaishwili NT; Tsouladze AM; Larionov VL
    Yeast; 1988 Dec; 4(4):257-69. PubMed ID: 3064490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide mapping of unexplored essential regions in the Saccharomyces cerevisiae genome: evidence for hidden synthetic lethal combinations in a genetic interaction network.
    Kaboli S; Yamakawa T; Sunada K; Takagaki T; Sasano Y; Sugiyama M; Kaneko Y; Harashima S
    Nucleic Acids Res; 2014 Sep; 42(15):9838-53. PubMed ID: 25104020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the ATP3 gene of Saccharomyces cerevisiae: presence of two closely linked copies, ATP3a and ATP3b, on the right arm of chromosome II.
    Ohnishi K; Ishibashi S; Kunihiro M; Satoh T; Matsubara K; Oku S; Ono B; Mabuchi T; Takeda M
    Yeast; 2003 Aug; 20(11):943-54. PubMed ID: 12898710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.