These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 16018815)

  • 1. A software tool for creating simulated outbreaks to benchmark surveillance systems.
    Cassa CA; Iancu K; Olson KL; Mandl KD
    BMC Med Inform Decis Mak; 2005 Jul; 5():22. PubMed ID: 16018815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring outbreak-detection performance by using controlled feature set simulations.
    Mandl KD; Reis B; Cassa C
    MMWR Suppl; 2004 Sep; 53():130-6. PubMed ID: 15714642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmark data and power calculations for evaluating disease outbreak detection methods.
    Kulldorff M; Zhang Z; Hartman J; Heffernan R; Huang L; Mostashari F
    MMWR Suppl; 2004 Sep; 53():144-51. PubMed ID: 15714644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real time spatial cluster detection using interpoint distances among precise patient locations.
    Olson KL; Bonetti M; Pagano M; Mandl KD
    BMC Med Inform Decis Mak; 2005 Jun; 5():19. PubMed ID: 15969749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reviewing and managing syndromic surveillance SaTScan datasets using an open source data visualization tool.
    Grannis SJ; Egg J; Overhage JM
    AMIA Annu Symp Proc; 2005; 2005():967. PubMed ID: 16779254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. National Bioterrorism Syndromic Surveillance Demonstration Program.
    Yih WK; Caldwell B; Harmon R; Kleinman K; Lazarus R; Nelson A; Nordin J; Rehm B; Richter B; Ritzwoller D; Sherwood E; Platt R
    MMWR Suppl; 2004 Sep; 53():43-9. PubMed ID: 15714626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using GIS to create synthetic disease outbreaks.
    Watkins RE; Eagleson S; Beckett S; Garner G; Veenendaal B; Wright G; Plant AJ
    BMC Med Inform Decis Mak; 2007 Feb; 7():4. PubMed ID: 17300714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A context-sensitive approach to anonymizing spatial surveillance data: impact on outbreak detection.
    Cassa CA; Grannis SJ; Overhage JM; Mandl KD
    J Am Med Inform Assoc; 2006; 13(2):160-5. PubMed ID: 16357353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation model for syndromic surveillance: assessing the performance of a temporal algorithm.
    Buckeridge DL; Switzer P; Owens D; Siegrist D; Pavlin J; Musen M
    MMWR Suppl; 2005 Aug; 54():109-15. PubMed ID: 16177701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparison between early outbreak detection models and simulated outbreaks of measles in Beijing].
    Wang XL; Wang QY; Liu DL; Zeng DJ; Cheng H; Li S; Duan W; Li XY; Luan RS; He X
    Zhonghua Liu Xing Bing Xue Za Zhi; 2009 Feb; 30(2):159-62. PubMed ID: 19565878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building test data from real outbreaks for evaluating detection algorithms.
    Texier G; Jackson ML; Siwe L; Meynard JB; Deparis X; Chaudet H
    PLoS One; 2017; 12(9):e0183992. PubMed ID: 28863159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation-Based Evaluation of the Performances of an Algorithm for Detecting Abnormal Disease-Related Features in Cattle Mortality Records.
    Perrin JB; Durand B; Gay E; Ducrot C; Hendrikx P; Calavas D; Hénaux V
    PLoS One; 2015; 10(11):e0141273. PubMed ID: 26536596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating syndromic surveillance data across multiple locations: effects on outbreak detection performance.
    Reis BY; Mandl KD
    AMIA Annu Symp Proc; 2003; 2003():549-53. PubMed ID: 14728233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RODS Open Source Project: removing a barrier to syndromic surveillance.
    Espino JU; Wagner MM; Tsui FC; Su HD; Olszewski RT; Lie Z; Chapman W; Zeng X; Ma L; Lu ZW; Dara J
    Stud Health Technol Inform; 2004; 107(Pt 2):1192-6. PubMed ID: 15361001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An open source environment for the statistical evaluation of outbreak detection methods.
    Lumley T; Sebestyen K; Lober WB; Painter I
    AMIA Annu Symp Proc; 2005; 2005():1037. PubMed ID: 16779324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removing a barrier to computer-based outbreak and disease surveillance--the RODS Open Source Project.
    Espino JU; Wagner M; Szczepaniak C; Tsui FC; Su H; Olszewski R; Liu Z; Chapman W; Zeng X; Ma L; Lu Z; Dara J
    MMWR Suppl; 2004 Sep; 53():32-9. PubMed ID: 15714624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the determinants of outbreak detection performance through simulation and machine learning.
    Jafarpour N; Izadi M; Precup D; Buckeridge DL
    J Biomed Inform; 2015 Feb; 53():180-7. PubMed ID: 25445482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the joint disease outbreak-detection time when an automated biosurveillance system is augmenting traditional clinical case finding.
    Shen Y; Adamou C; Dowling JN; Cooper GF
    J Biomed Inform; 2008 Apr; 41(2):224-31. PubMed ID: 18194876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Template-driven spatial-temporal outbreak simulation for outbreak detection evaluation.
    Zhang M; Wallstrom GL
    AMIA Annu Symp Proc; 2008 Nov; 2008():854-8. PubMed ID: 18999301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AEGIS: a robust and scalable real-time public health surveillance system.
    Reis BY; Kirby C; Hadden LE; Olson K; McMurry AJ; Daniel JB; Mandl KD
    J Am Med Inform Assoc; 2007; 14(5):581-8. PubMed ID: 17600100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.