These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16018905)

  • 1. Copper and cadmium complexation by high molecular weight materials of dominant microalgae and of water from a eutrophic reservoir.
    GouvĂȘa SP; Vieira AA; Lombardi AT
    Chemosphere; 2005 Sep; 60(9):1332-9. PubMed ID: 16018905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.
    Tonietto AE; Lombardi AT; Choueri RB; Vieira AA
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15920-30. PubMed ID: 26050150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cylindrospermopsis raciborskii (Cyanobacteria) exudates: chemical characterization and complexation capacity for Cu, Zn, Cd and Pb.
    Tonietto AE; Lombardi AT; Vieira AA; Parrish CC; Choueri RB
    Water Res; 2014 Feb; 49():381-90. PubMed ID: 24169513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper complexing properties of dissolved organic materials exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae).
    Lombardi AT; Hidalgo TM; Vieira AA
    Chemosphere; 2005 Jul; 60(4):453-9. PubMed ID: 15950037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water.
    Matsuo AY; Wood CM; Val AL
    Aquat Toxicol; 2005 Sep; 74(4):351-64. PubMed ID: 16051381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.
    Levy JL; Angel BM; Stauber JL; Poon WL; Simpson SL; Cheng SH; Jolley DF
    Aquat Toxicol; 2008 Aug; 89(2):82-93. PubMed ID: 18639348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium toxicity to two marine phytoplankton under different nutrient conditions.
    Miao AJ; Wang WX
    Aquat Toxicol; 2006 Jun; 78(2):114-26. PubMed ID: 16616380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal (Zn and Cu) complexation and molecular size distribution in wastewater treatment plant effluent.
    Chaminda GG; Nakajima F; Furumai H
    Water Sci Technol; 2008; 58(6):1207-13. PubMed ID: 18845858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of physicochemical forms of storage in microalgae in predicting copper transfer to filter-feeding oysters (Crassostrea gigas).
    Amiard-Triquet C; Berthet B; Joux L; Perrein-Ettajani H
    Environ Toxicol; 2006 Feb; 21(1):1-7. PubMed ID: 16463257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper and cadmium complexation by Cylindrospermopsis raciborskii exudates.
    Tonietto AE; Oliveira NL; Lombardi AT; Polpo A
    Water Sci Technol; 2016; 73(10):2544-51. PubMed ID: 27191577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper.
    Soldo D; Hari R; Sigg L; Behra R
    Aquat Toxicol; 2005 Mar; 71(4):307-17. PubMed ID: 15710479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect.
    Rangel-Mendez JR; Monroy-Zepeda R; Leyva-Ramos E; Diaz-Flores PE; Shirai K
    J Hazard Mater; 2009 Feb; 162(1):503-11. PubMed ID: 18585858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal accumulation in the polychaete Hediste japonica with emphasis on interaction between heavy metals and petroleum hydrocarbons.
    Sun FH; Zhou QX
    Environ Pollut; 2007 Sep; 149(1):92-8. PubMed ID: 17331629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-containing plastocyanin used for electron transport by an oceanic diatom.
    Peers G; Price NM
    Nature; 2006 May; 441(7091):341-4. PubMed ID: 16572122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes.
    Loutseti S; Danielidis DB; Economou-Amilli A; Katsaros Ch; Santas R; Santas P
    Bioresour Technol; 2009 Apr; 100(7):2099-105. PubMed ID: 19109013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry: a cadmium enzyme from a marine diatom.
    Lane TW; Saito MA; George GN; Pickering IJ; Prince RC; Morel FM
    Nature; 2005 May; 435(7038):42. PubMed ID: 15875011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper and zinc tolerance of two tropical microalgae after copper acclimation.
    Johnson HL; Stauber JL; Adams MS; Jolley DF
    Environ Toxicol; 2007 Jun; 22(3):234-44. PubMed ID: 17497632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal and neonatal scalp hair concentrations of zinc, copper, cadmium, and lead: relationship to some lifestyle factors.
    Razagui IB; Ghribi I
    Biol Trace Elem Res; 2005 Jul; 106(1):1-28. PubMed ID: 16037607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes.
    Lim MH; Wong BA; Pitcock WH; Mokshagundam D; Baik MH; Lippard SJ
    J Am Chem Soc; 2006 Nov; 128(44):14364-73. PubMed ID: 17076510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallothionein role in the kinetic model of copper accumulation and elimination in the clam Ruditapes decussatus.
    Serafim A; Bebianno MJ
    Environ Res; 2009 May; 109(4):390-9. PubMed ID: 19345346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.