BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16018968)

  • 1. Structural characterization of the MIT domain from human Vps4b.
    Takasu H; Jee JG; Ohno A; Goda N; Fujiwara K; Tochio H; Shirakawa M; Hiroaki H
    Biochem Biophys Res Commun; 2005 Aug; 334(2):460-5. PubMed ID: 16018968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MIT domainia.
    Hurley JH; Yang D
    Dev Cell; 2008 Jan; 14(1):6-8. PubMed ID: 18194647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide-dependent conformational changes and assembly of the AAA ATPase SKD1/VPS4B.
    Inoue M; Kamikubo H; Kataoka M; Kato R; Yoshimori T; Wakatsuki S; Kawasaki M
    Traffic; 2008 Dec; 9(12):2180-9. PubMed ID: 18796009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vps4 regulates a subset of protein interactions at the multivesicular endosome.
    Vajjhala PR; Catchpoole E; Nguyen CH; Kistler C; Munn AL
    FEBS J; 2007 Apr; 274(8):1894-907. PubMed ID: 17408385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and mechanistic studies of VPS4 proteins.
    Scott A; Chung HY; Gonciarz-Swiatek M; Hill GC; Whitby FG; Gaspar J; Holton JM; Viswanathan R; Ghaffarian S; Hill CP; Sundquist WI
    EMBO J; 2005 Oct; 24(20):3658-69. PubMed ID: 16193069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs).
    Han H; Monroe N; Votteler J; Shakya B; Sundquist WI; Hill CP
    J Biol Chem; 2015 May; 290(21):13490-9. PubMed ID: 25833946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain.
    Iwaya N; Takasu H; Goda N; Shirakawa M; Tanaka T; Hamada D; Hiroaki H
    J Biochem; 2013 May; 153(5):473-81. PubMed ID: 23423459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.
    Guo EZ; Xu Z
    J Biol Chem; 2015 Mar; 290(13):8396-408. PubMed ID: 25657007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian class E Vps proteins, SBP1 and mVps2/CHMP2A, interact with and regulate the function of an AAA-ATPase SKD1/Vps4B.
    Fujita H; Umezuki Y; Imamura K; Ishikawa D; Uchimura S; Nara A; Yoshimori T; Hayashizaki Y; Kawai J; Ishidoh K; Tanaka Y; Himeno M
    J Cell Sci; 2004 Jun; 117(Pt 14):2997-3009. PubMed ID: 15173323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ESCRT-III recognition by VPS4 ATPases.
    Stuchell-Brereton MD; Skalicky JJ; Kieffer C; Karren MA; Ghaffarian S; Sundquist WI
    Nature; 2007 Oct; 449(7163):740-4. PubMed ID: 17928862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The beta domain is required for Vps4p oligomerization into a functionally active ATPase.
    Vajjhala PR; Wong JS; To HY; Munn AL
    FEBS J; 2006 Jun; 273(11):2357-73. PubMed ID: 16704411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1.
    Azmi IF; Davies BA; Xiao J; Babst M; Xu Z; Katzmann DJ
    Dev Cell; 2008 Jan; 14(1):50-61. PubMed ID: 18194652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A.
    Scott A; Gaspar J; Stuchell-Brereton MD; Alam SL; Skalicky JJ; Sundquist WI
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13813-8. PubMed ID: 16174732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines.
    Monroe N; Hill CP
    J Mol Biol; 2016 May; 428(9 Pt B):1897-911. PubMed ID: 26555750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast.
    Kojima R; Obita T; Onoue K; Mizuguchi M
    J Mol Biol; 2016 Jun; 428(11):2392-2404. PubMed ID: 27075672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4.
    Obita T; Saksena S; Ghazi-Tabatabai S; Gill DJ; Perisic O; Emr SD; Williams RL
    Nature; 2007 Oct; 449(7163):735-9. PubMed ID: 17928861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain.
    Shim S; Kimpler LA; Hanson PI
    Traffic; 2007 Aug; 8(8):1068-79. PubMed ID: 17547705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Sulfolobus solfataricus AAA protein Sso0909, a homologue of the eukaryotic ESCRT Vps4 ATPase.
    Hobel CF; Albers SV; Driessen AJ; Lupas AN
    Biochem Soc Trans; 2008 Feb; 36(Pt 1):94-8. PubMed ID: 18208393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mechanism of regulating the ATPase VPS4 by its cofactor LIP5 and the endosomal sorting complex required for transport (ESCRT)-III protein CHMP5.
    Vild CJ; Li Y; Guo EZ; Liu Y; Xu Z
    J Biol Chem; 2015 Mar; 290(11):7291-303. PubMed ID: 25637630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B.
    Yang D; Rismanchi N; Renvoisé B; Lippincott-Schwartz J; Blackstone C; Hurley JH
    Nat Struct Mol Biol; 2008 Dec; 15(12):1278-86. PubMed ID: 18997780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.