These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 16019110)
1. Evaluation of synchrotron X-ray computerized microtomography for the visualization of transport processes in low-porosity materials. Altman SJ; Peplinski WJ; Rivers ML J Contam Hydrol; 2005 Jul; 78(3):167-83. PubMed ID: 16019110 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation. Nakashima Y; Nakano T; Nakamura K; Uesugi K; Tsuchiyama A; Ikeda S J Contam Hydrol; 2004 Oct; 74(1-4):253-64. PubMed ID: 15358495 [TBL] [Abstract][Full Text] [Related]
3. Characterization of adsorption sites on aggregate soil samples using synchrotron X-ray computerized microtomography. Altman SJ; Rivers ML; Reno MD; Cygan RT; McLain AA Environ Sci Technol; 2005 Apr; 39(8):2679-85. PubMed ID: 15884365 [TBL] [Abstract][Full Text] [Related]
4. Imaging biofilm in porous media using X-ray computed microtomography. Davit Y; Iltis G; Debenest G; Veran-Tissoires S; Wildenschild D; Gerino M; Quintard M J Microsc; 2011 Apr; 242(1):15-25. PubMed ID: 21118226 [TBL] [Abstract][Full Text] [Related]
5. 3-D characterization of weathered building limestones by high resolution synchrotron X-ray microtomography. Rozenbaum O Sci Total Environ; 2011 Apr; 409(10):1959-66. PubMed ID: 21377194 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional visualization and quantification of non-aqueous phase liquid volumes in natural porous media using a medical X-ray Computed Tomography scanner. Goldstein L; Prasher SO; Ghoshal S J Contam Hydrol; 2007 Aug; 93(1-4):96-110. PubMed ID: 17350716 [TBL] [Abstract][Full Text] [Related]
7. Pore characteristics of bone substitute materials assessed by microcomputed tomography. Klein M; Goetz H; Pazen S; Al-Nawas B; Wagner W; Duschner H Clin Oral Implants Res; 2009 Jan; 20(1):67-74. PubMed ID: 19126109 [TBL] [Abstract][Full Text] [Related]
8. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896 [TBL] [Abstract][Full Text] [Related]
9. Quantification of a single aggregate inner porosity and pore accessibility using hard X-ray phase-contrast nanotomography. Trtik P; Soos M; Münch B; Lamprou A; Mokso R; Stampanoni M Langmuir; 2011 Nov; 27(21):12788-91. PubMed ID: 21939251 [TBL] [Abstract][Full Text] [Related]
10. Use of X-ray absorption imaging to examine heterogeneous diffusion in fractured crystalline rocks. Altman SJ; Uchida M; Tidwell VC; Boney CM; Chambers BP J Contam Hydrol; 2004 Mar; 69(1-2):1-26. PubMed ID: 14972435 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional pore structure of chromatographic adsorbents from electron tomography. Yao Y; Czymmek KJ; Pazhianur R; Lenhoff AM Langmuir; 2006 Dec; 22(26):11148-57. PubMed ID: 17154596 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the structure and permeability of titanium foams for spinal fusion devices. Singh R; Lee PD; Lindley TC; Dashwood RJ; Ferrie E; Imwinkelried T Acta Biomater; 2009 Jan; 5(1):477-87. PubMed ID: 18657494 [TBL] [Abstract][Full Text] [Related]
13. A technique for estimating one-dimensional diffusion coefficients in low-permeability sedimentary rock using X-ray radiography: comparison with through-diffusion measurements. Cavé L; Al T; Xiang Y; Vilks P J Contam Hydrol; 2009 Jan; 103(1-2):1-12. PubMed ID: 18838191 [TBL] [Abstract][Full Text] [Related]
14. Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Cancedda R; Cedola A; Giuliani A; Komlev V; Lagomarsino S; Mastrogiacomo M; Peyrin F; Rustichelli F Biomaterials; 2007 May; 28(15):2505-24. PubMed ID: 17292959 [TBL] [Abstract][Full Text] [Related]
15. Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Knackstedt MA; Arns CH; Senden TJ; Gross K Biomaterials; 2006 May; 27(13):2776-86. PubMed ID: 16423388 [TBL] [Abstract][Full Text] [Related]
16. Compact x-ray microtomography system for element mapping and absorption imaging. Feldkamp JM; Schroer CG; Patommel J; Lengeler B; Günzler TF; Schweitzer M; Stenzel C; Dieckmann M; Schroeder WH Rev Sci Instrum; 2007 Jul; 78(7):073702. PubMed ID: 17672761 [TBL] [Abstract][Full Text] [Related]
17. Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber. Lak M; Néraudeau D; Nel A; Cloetens P; Perrichot V; Tafforeau P Microsc Microanal; 2008 Jun; 14(3):251-9. PubMed ID: 18312722 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical microimaging for multiscale analysis of large vascular networks. Heinzer S; Krucker T; Stampanoni M; Abela R; Meyer EP; Schuler A; Schneider P; Müller R Neuroimage; 2006 Aug; 32(2):626-36. PubMed ID: 16697665 [TBL] [Abstract][Full Text] [Related]
19. Contrast enhancement of speckle patterns from blood in synchrotron X-ray imaging. Kim GB; Lee SJ J Biomech; 2009 Mar; 42(4):449-54. PubMed ID: 19181319 [TBL] [Abstract][Full Text] [Related]
20. A physical phantom for the calibration of three-dimensional X-ray microtomography examination. Perilli E; Baruffaldi F; Bisi MC; Cristofolini L; Cappello A J Microsc; 2006 May; 222(Pt 2):124-34. PubMed ID: 16774521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]