BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16019389)

  • 1. Pyrithiones as antifoulants: environmental fate and loss of toxicity.
    Turley PA; Fenn RJ; Ritter JC; Callow ME
    Biofouling; 2005; 21(1):31-40. PubMed ID: 16019389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect estimation of degradation time for zinc pyrithione and copper pyrithione in seawater.
    Maraldo K; Dahllöf I
    Mar Pollut Bull; 2004 May; 48(9-10):894-901. PubMed ID: 15111036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater.
    Onduka T; Mochida K; Harino H; Ito K; Kakuno A; Fujii K
    Arch Environ Contam Toxicol; 2010 May; 58(4):991-7. PubMed ID: 19967345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity reduction of metal pyrithiones by near ultraviolet irradiation.
    Okamura H; Kobayashi N; Miyanaga M; Nogami Y
    Environ Toxicol; 2006 Aug; 21(4):305-9. PubMed ID: 16841307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity and metabolism of copper pyrithione and its degradation product, 2,2'-dipyridyldisulfide in a marine polychaete.
    Mochida K; Amano H; Onduka T; Kakuno A; Fujii K
    Chemosphere; 2011 Jan; 82(3):390-7. PubMed ID: 20965543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of acetylcholinesterase by metabolites of copper pyrithione (CuPT) and its possible involvement in vertebral deformity of a CuPT-exposed marine teleostean fish.
    Mochida K; Ito K; Harino H; Tanaka H; Onduka T; Kakuno A; Fujii K
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 May; 149(4):624-30. PubMed ID: 19211040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Lui GC; Leung KM
    Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria.
    Bao VW; Leung KM; Kwok KW; Zhang AQ; Lui GC
    Mar Pollut Bull; 2008; 57(6-12):616-23. PubMed ID: 18495176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel antifouling agent--zinc pyrithione: short- and long-term effects on survival and reproduction of the marine polychaete Dinophilus gyrociliatus.
    Marcheselli M; Conzo F; Mauri M; Simonini R
    Aquat Toxicol; 2010 Jun; 98(2):204-10. PubMed ID: 20211499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of metal pyrithione antifoulants on freshwater macrophyte Lemna gibba G3 determined by image analysis.
    Okamura H; Togosmaa L; Sawamoto T; Fukushi K; Nishida T; Beppu T
    Ecotoxicology; 2012 May; 21(4):1102-11. PubMed ID: 22350106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of seawater properties on toxicity of copper pyrithione and its degradation product to brine shrimp Artemia salina.
    Lavtizar V; Kimura D; Asaoka S; Okamura H
    Ecotoxicol Environ Saf; 2018 Jan; 147():132-138. PubMed ID: 28841528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans.
    Sánchez-Bayo F; Goka K
    Aquat Toxicol; 2006 Jun; 78(3):262-71. PubMed ID: 16690142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel antifouling agent zinc pyrithione: determination, acute toxicity, and bioaccumulation in marine mussels (Mytilus galloprovincialis).
    Marcheselli M; Rustichelli C; Mauri M
    Environ Toxicol Chem; 2010 Nov; 29(11):2583-92. PubMed ID: 20853456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospray ionization mass spectrometric observation of ligand exchange of zinc pyrithione with amino acids.
    Moriwaki H; Okabayashi M; Watanabe T; Kawasaki H; Arakawa R
    Rapid Commun Mass Spectrom; 2009 Jul; 23(14):2161-6. PubMed ID: 19517459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effects of sublethal concentrations of biofoulants, copper pyrithione and zinc pyrithione on a marine mysid - A multigenerational study.
    Lee S; Haque MN; Lee DH; Rhee JS
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Sep; 271():109694. PubMed ID: 37394131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrithiones as antifoulants: Environmental chemistry and preliminary risk assessment.
    Turley PA; Fenn RJ; Ritter JC
    Biofouling; 2000; 15(1-3):175-82. PubMed ID: 22115302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous phototransformation of zinc pyrithione Degradation kinetics and byproduct identification by liquid chromatography--atmospheric pressure chemical ionisation mass spectrometry.
    Sakkas VA; Shibata K; Yamaguchi Y; Sugasawa S; Albanis T
    J Chromatogr A; 2007 Mar; 1144(2):175-82. PubMed ID: 17291515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abiotic degradation of triphenylborane pyridine (TPBP) antifouling agent in water.
    Zhou X; Okamura H; Nagata S
    Chemosphere; 2007 May; 67(10):1904-10. PubMed ID: 17257651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avoidance response of sediment living amphipods to zinc pyrithione as a measure of sediment toxicity.
    Eriksson Wiklund AK; Börjesson T; Wiklund SJ
    Mar Pollut Bull; 2006 Jan; 52(1):96-9. PubMed ID: 16229864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris).
    Mochida K; Ito K; Harino H; Kakuno A; Fujii K
    Environ Toxicol Chem; 2006 Nov; 25(11):3058-64. PubMed ID: 17089732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.