BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16019798)

  • 1. Epidemiology of mycotoxigenic fungi associated with Fusarium ear blight and apple blue mould: a review.
    Xu XM; Berrie AM
    Food Addit Contam; 2005 Apr; 22(4):290-301. PubMed ID: 16019798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fungal interactions among Fusarium head blight pathogens on disease development and mycotoxin accumulation.
    Xu X; Nicholson P; Ritieni A
    Int J Food Microbiol; 2007 Oct; 119(1-2):67-71. PubMed ID: 17706822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of predictive models for Fusarium head blight and related mycotoxin contamination in wheat.
    Prandini A; Sigolo S; Filippi L; Battilani P; Piva G
    Food Chem Toxicol; 2009 May; 47(5):927-31. PubMed ID: 18634842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidemiology of Fusarium head blight on small-grain cereals.
    Osborne LE; Stein JM
    Int J Food Microbiol; 2007 Oct; 119(1-2):103-8. PubMed ID: 17716761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of agricultural practices on fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins.
    Edwards SG
    Toxicol Lett; 2004 Oct; 153(1):29-35. PubMed ID: 15342078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat.
    Yuen GY; Schoneweis SD
    Int J Food Microbiol; 2007 Oct; 119(1-2):126-30. PubMed ID: 17716767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiversity of complexes of mycotoxigenic fungal species associated with Fusarium ear rot of maize and Aspergillus rot of grape.
    Logrieco A; Moretti A; Perrone G; Mulè G
    Int J Food Microbiol; 2007 Oct; 119(1-2):11-6. PubMed ID: 17765992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-harvest control strategies: minimizing mycotoxins in the food chain.
    Magan N; Aldred D
    Int J Food Microbiol; 2007 Oct; 119(1-2):131-9. PubMed ID: 17764773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production.
    Kim SH; Vujanovic V
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5257-72. PubMed ID: 27121573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit.
    Luciano-Rosario D; Keller NP; Jurick WM
    Mol Plant Pathol; 2020 Nov; 21(11):1391-1404. PubMed ID: 32969130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusarium head blight and associated mycotoxin occurrence on winter wheat in Luxembourg in 2007/2008.
    Giraud F; Pasquali M; El Jarroudi M; Vrancken C; Brochot C; Cocco E; Hoffmann L; Delfosse P; Bohn T
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Jun; 27(6):825-35. PubMed ID: 20198523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome p450 gene.
    Li X; Zhang JB; Song B; Li HP; Xu HQ; Qu B; Dang FJ; Liao YC
    Phytopathology; 2010 Feb; 100(2):183-91. PubMed ID: 20055652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection.
    Ilgen P; Hadeler B; Maier FJ; Schäfer W
    Mol Plant Microbe Interact; 2009 Aug; 22(8):899-908. PubMed ID: 19589066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycotoxin profiles in the grain of Triticum monococcum, Triticum dicoccum and Triticum spelta after head infection with Fusarium culmorum.
    Suchowilska E; Kandler W; Sulyok M; Wiwart M; Krska R
    J Sci Food Agric; 2010 Mar; 90(4):556-65. PubMed ID: 20355081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance in wheat to Fusarium infection and trichothecene formation.
    Snijders CH
    Toxicol Lett; 2004 Oct; 153(1):37-46. PubMed ID: 15342079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat.
    Lemmens M; Scholz U; Berthiller F; Dall'Asta C; Koutnik A; Schuhmacher R; Adam G; Buerstmayr H; Mesterházy A; Krska R; Ruckenbauer P
    Mol Plant Microbe Interact; 2005 Dec; 18(12):1318-24. PubMed ID: 16478051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis.
    Brandfass C; Karlovsky P
    BMC Microbiol; 2006 Jan; 6():4. PubMed ID: 16430784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of Fusarium head blight and deoxynivalenol in wheat with early fungicide applications of prothioconazole.
    Edwards SG; Godley NP
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):629-35. PubMed ID: 20349372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of winter wheat (Triticum aestivum L.) cultivars to infection with Fusarium spp.: mycotoxin contamination in grain and chaff.
    Golinski P; Waskiewicz A; Wisniewska H; Kiecana I; Mielniczuk E; Gromadzka K; Kostecki M; Bocianowski J; Rymaniak E
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Jul; 27(7):1015-24. PubMed ID: 20432094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of Fusarium mycotoxin contamination by breeding and fungicide application to wheat.
    Lehoczki-Krsjak S; Szabó-Hevér A; Tóth B; Kótai C; Bartók T; Varga M; Farády L; Mesterházy A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):616-28. PubMed ID: 20455158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.