BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 16020455)

  • 21. S1-S3 counter charges in the voltage sensor module of a mammalian sodium channel regulate fast inactivation.
    Groome JR; Winston V
    J Gen Physiol; 2013 May; 141(5):601-18. PubMed ID: 23589580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping the interaction surface of scorpion β-toxins with an insect sodium channel.
    Zhorov BS; Du Y; Song W; Luo N; Gordon D; Gurevitz M; Dong K
    Biochem J; 2021 Jul; 478(14):2843-2869. PubMed ID: 34195804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. muO conotoxins inhibit NaV channels by interfering with their voltage sensors in domain-2.
    Leipold E; DeBie H; Zorn S; Borges A; Olivera BM; Terlau H; Heinemann SH
    Channels (Austin); 2007; 1(4):253-62. PubMed ID: 18698149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acidic residues on the voltage-sensor domain determine the activation of the NaChBac sodium channel.
    Blanchet J; Pilote S; Chahine M
    Biophys J; 2007 May; 92(10):3513-23. PubMed ID: 17325004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. State-dependent electrostatic interactions of S4 arginines with E1 in S2 during Kv7.1 activation.
    Wu D; Delaloye K; Zaydman MA; Nekouzadeh A; Rudy Y; Cui J
    J Gen Physiol; 2010 Jun; 135(6):595-606. PubMed ID: 20479111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of human Nav1.7 channel gating by synthetic α-scorpion toxin OD1 and its analogs.
    Motin L; Durek T; Adams DJ
    Channels (Austin); 2016; 10(2):139-47. PubMed ID: 26646206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KV4.3 expression and gating: S2 and S3 acidic and S4 innermost basic residues.
    Skerritt MR; Campbell DL
    Channels (Austin); 2009 Nov; 3(6):413-26. PubMed ID: 19806027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alpha-scorpion toxin impairs a conformational change that leads to fast inactivation of muscle sodium channels.
    Campos FV; Chanda B; Beirão PS; Bezanilla F
    J Gen Physiol; 2008 Aug; 132(2):251-63. PubMed ID: 18663133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR analysis of interaction of LqhalphaIT scorpion toxin with a peptide corresponding to the D4/S3-S4 loop of insect para voltage-gated sodium channel.
    Schnur E; Turkov M; Kahn R; Gordon D; Gurevitz M; Anglister J
    Biochemistry; 2008 Jan; 47(3):911-21. PubMed ID: 18154318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resurgent current and voltage sensor trapping enhanced activation by a beta-scorpion toxin solely in Nav1.6 channel. Significance in mice Purkinje neurons.
    Schiavon E; Sacco T; Cassulini RR; Gurrola G; Tempia F; Possani LD; Wanke E
    J Biol Chem; 2006 Jul; 281(29):20326-37. PubMed ID: 16702217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution structure and alanine scan of a spider toxin that affects the activation of mammalian voltage-gated sodium channels.
    Corzo G; Sabo JK; Bosmans F; Billen B; Villegas E; Tytgat J; Norton RS
    J Biol Chem; 2007 Feb; 282(7):4643-4652. PubMed ID: 17148449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combinatorial interaction of scorpion toxins Lqh-2, Lqh-3, and LqhalphaIT with sodium channel receptor sites-3.
    Leipold E; Lu S; Gordon D; Hansel A; Heinemann SH
    Mol Pharmacol; 2004 Mar; 65(3):685-91. PubMed ID: 14978247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin.
    Jiang D; Tonggu L; Gamal El-Din TM; Banh R; Pomès R; Zheng N; Catterall WA
    Nat Commun; 2021 Jan; 12(1):128. PubMed ID: 33397917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for gating charge movement in the voltage sensor of a sodium channel.
    Yarov-Yarovoy V; DeCaen PG; Westenbroek RE; Pan CY; Scheuer T; Baker D; Catterall WA
    Proc Natl Acad Sci U S A; 2012 Jan; 109(2):E93-102. PubMed ID: 22160714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutation of conserved negatively charged residues in the S2 and S3 transmembrane segments of a mammalian K+ channel selectively modulates channel gating.
    Planells-Cases R; Ferrer-Montiel AV; Patten CD; Montal M
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9422-6. PubMed ID: 7568145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains.
    Kontis KJ; Rounaghi A; Goldin AL
    J Gen Physiol; 1997 Oct; 110(4):391-401. PubMed ID: 9379171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains.
    Pless SA; Elstone FD; Niciforovic AP; Galpin JD; Yang R; Kurata HT; Ahern CA
    J Gen Physiol; 2014 May; 143(5):645-56. PubMed ID: 24778431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and Functional Characterization of a Novel Scorpion Toxin that Inhibits Na
    George K; Lopez-Mateos D; Abd El-Aziz TM; Xiao Y; Kline J; Bao H; Raza S; Stockand JD; Cummins TR; Fornelli L; Rowe MP; Yarov-Yarovoy V; Rowe AH
    Front Pharmacol; 2022; 13():846992. PubMed ID: 35662692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Domain 2 of Drosophila para voltage-gated sodium channel confers insect properties to a rat brain channel.
    Shichor I; Zlotkin E; Ilan N; Chikashvili D; Stuhmer W; Gordon D; Lotan I
    J Neurosci; 2002 Jun; 22(11):4364-71. PubMed ID: 12040042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gating properties of a sodium channel with three arginines substituted by histidines in the central part of voltage sensor S4D4.
    Kühn FJ; Greeff NG
    J Membr Biol; 2003 May; 193(1):23-34. PubMed ID: 12879163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.