These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16020525)

  • 1. Electrolytic transport through a synthetic nanometer-diameter pore.
    Ho C; Qiao R; Heng JB; Chatterjee A; Timp RJ; Aluru NR; Timp G
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10445-50. PubMed ID: 16020525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.
    Nonner W; Eisenberg B
    Biophys J; 1998 Sep; 75(3):1287-305. PubMed ID: 9726931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion current rectification at nanopores in glass membranes.
    White HS; Bund A
    Langmuir; 2008 Mar; 24(5):2212-8. PubMed ID: 18225931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion Current Rectification and Long-Range Interference in Conical Silicon Micropores.
    Aarts M; Boon WQ; Cuénod B; Dijkstra M; van Roij R; Alarcon-Llado E
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56226-56236. PubMed ID: 36484483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the charge regulation model to transport of ions through hydrophilic membranes: one-dimensional transport model for narrow pores (nanofiltration).
    de Lint WB; Biesheuvel PM; Verweij H
    J Colloid Interface Sci; 2002 Jul; 251(1):131-42. PubMed ID: 16290711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rectification properties of conically shaped nanopores: consequences of miniaturization.
    Pietschmann JF; Wolfram MT; Burger M; Trautmann C; Nguyen G; Pevarnik M; Bayer V; Siwy Z
    Phys Chem Chem Phys; 2013 Oct; 15(39):16917-26. PubMed ID: 24002326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic Conduction in Biological Nanopores Created by Ultrashort9 High-Intensity Pulses.
    Qiu H; Wang X; Choi A; Xie F; Zhao W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
    Chen D; Lear J; Eisenberg B
    Biophys J; 1997 Jan; 72(1):97-116. PubMed ID: 8994596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate, water and ion transport through a charged nanosize pore.
    De Luca G; Glavinović MI
    Biochim Biophys Acta; 2007 Feb; 1768(2):264-79. PubMed ID: 17014822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion transport in sub-5-nm graphene nanopores.
    Suk ME; Aluru NR
    J Chem Phys; 2014 Feb; 140(8):084707. PubMed ID: 24588191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rectification in synthetic conical nanopores: a one-dimensional Poisson-Nernst-Planck model.
    Kosińska ID; Goychuk I; Kostur M; Schmid G; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031131. PubMed ID: 18517353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore.
    Bolintineanu DS; Sayyed-Ahmad A; Davis HT; Kaznessis YN
    PLoS Comput Biol; 2009 Jan; 5(1):e1000277. PubMed ID: 19180178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations.
    Rems L; Tarek M; Casciola M; Miklavčič D
    Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
    Schuss Z; Nadler B; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036116. PubMed ID: 11580403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong Electroosmotic Coupling Dominates Ion Conductance of 1.5 nm Diameter Carbon Nanotube Porins.
    Yao YC; Taqieddin A; Alibakhshi MA; Wanunu M; Aluru NR; Noy A
    ACS Nano; 2019 Nov; 13(11):12851-12859. PubMed ID: 31682401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angstrom-Size Defect Creation and Ionic Transport through Pores in Single-Layer MoS
    Thiruraman JP; Fujisawa K; Danda G; Das PM; Zhang T; Bolotsky A; Perea-López N; Nicolaï A; Senet P; Terrones M; Drndić M
    Nano Lett; 2018 Mar; 18(3):1651-1659. PubMed ID: 29464959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Flow in a Cylindrical Nanopore with an Object-Implications for Virus Sensing.
    Tajparast M; Glavinovic M
    Bionanoscience; 2022; 12(3):927-945. PubMed ID: 35607652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.
    Chen D
    Bull Math Biol; 2016 Aug; 78(8):1703-26. PubMed ID: 27480225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate characterization of single track-etched, conical nanopores.
    Apel PY; Ramirez P; Blonskaya IV; Orelovitch OL; Sartowska BA
    Phys Chem Chem Phys; 2014 Aug; 16(29):15214-23. PubMed ID: 24939748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nernst-Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential.
    Kim H; Jeong N; Yang S; Choi J; Lee MS; Nam JY; Jwa E; Kim B; Ryu KS; Choi YW
    Water Res; 2019 Nov; 165():114970. PubMed ID: 31426007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.