These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16020537)

  • 1. Graphene nanostructures as tunable storage media for molecular hydrogen.
    Patchkovskii S; Tse JS; Yurchenko SN; Zhechkov L; Heine T; Seifert G
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10439-44. PubMed ID: 16020537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physisorption, Diffusion, and Chemisorption Pathways of H2 Molecule on Graphene and on (2,2) Carbon Nanotube by First Principles Calculations.
    Costanzo F; Silvestrelli PL; Ancilotto F
    J Chem Theory Comput; 2012 Apr; 8(4):1288-94. PubMed ID: 26596745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.
    Tan X; Kou L; Tahini HA; Smith SC
    ChemSusChem; 2015 Nov; 8(21):3626-31. PubMed ID: 26384030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling H2 chemisorption and physisorption on metal decorated graphene using quantum Monte Carlo.
    Al-Hamdani YS; Zen A; Alfè D
    J Chem Phys; 2023 Nov; 159(20):. PubMed ID: 38018756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of quantum effects on the physisorption of molecular hydrogen in model carbon foams.
    Martínez-Mesa A; Yurchenko SN; Patchkovskii S; Heine T; Seifert G
    J Chem Phys; 2011 Dec; 135(21):214701. PubMed ID: 22149805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.
    Wang H; Dai H
    Chem Soc Rev; 2013 Apr; 42(7):3088-113. PubMed ID: 23361617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping.
    Cabria I; López MJ; Alonso JA
    J Chem Phys; 2008 Apr; 128(14):144704. PubMed ID: 18412468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen storage in engineered carbon nanospaces.
    Burress J; Kraus M; Beckner M; Cepel R; Suppes G; Wexler C; Pfeifer P
    Nanotechnology; 2009 May; 20(20):204026. PubMed ID: 19420674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel behavior of monolayer quantum gases on graphene, graphane and fluorographene.
    Reatto L; Galli DE; Nava M; Cole MW
    J Phys Condens Matter; 2013 Nov; 25(44):443001. PubMed ID: 24113280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enhanced hydrogen adsorption enthalpy for fluoride intercalated graphite compounds.
    Cheng H; Sha X; Chen L; Cooper AC; Foo ML; Lau GC; Bailey WH; Pez GP
    J Am Chem Soc; 2009 Dec; 131(49):17732-3. PubMed ID: 19928879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping.
    Cabria I; López MJ; Alonso JA
    J Chem Phys; 2005 Nov; 123(20):204721. PubMed ID: 16351307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncovalent interaction of carbon nanostructures.
    Umadevi D; Panigrahi S; Sastry GN
    Acc Chem Res; 2014 Aug; 47(8):2574-81. PubMed ID: 25032482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation.
    Deng WQ; Xu X; Goddard WA
    Phys Rev Lett; 2004 Apr; 92(16):166103. PubMed ID: 15169245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-Based Sorbents for Hydrogen Storage: Challenges and Sustainability at Operating Conditions for Renewable Energy.
    Rimza T; Saha S; Dhand C; Dwivedi N; Patel SS; Singh S; Kumar P
    ChemSusChem; 2022 Jun; 15(11):e202200281. PubMed ID: 35377969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.
    Kowalczyk P; Tanaka H; Hołyst R; Kaneko K; Ohmori T; Miyamoto J
    J Phys Chem B; 2005 Sep; 109(36):17174-83. PubMed ID: 16853191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety considerations for graphene: lessons learnt from carbon nanotubes.
    Bussy C; Ali-Boucetta H; Kostarelos K
    Acc Chem Res; 2013 Mar; 46(3):692-701. PubMed ID: 23163827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions.
    Yu JG; Yu LY; Yang H; Liu Q; Chen XH; Jiang XY; Chen XQ; Jiao FP
    Sci Total Environ; 2015 Jan; 502():70-9. PubMed ID: 25244035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio computational investigation of physisorption of molecular hydrogen on achiral single-walled carbon nanotubes.
    Ferre-Vilaplana A
    J Chem Phys; 2005 Jun; 122(21):214724. PubMed ID: 15974779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks.
    Kuchta B; Firlej L; Mohammadhosseini A; Boulet P; Beckner M; Romanos J; Pfeifer P
    J Am Chem Soc; 2012 Sep; 134(36):15130-7. PubMed ID: 22897685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations.
    Du A; Zhu Z; Smith SC
    J Am Chem Soc; 2010 Mar; 132(9):2876-7. PubMed ID: 20155897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.