These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 16020658)

  • 41. Modelling slow wave activity in the small intestine.
    Lin AS; Buist ML; Smith NP; Pullan AJ
    J Theor Biol; 2006 Sep; 242(2):356-62. PubMed ID: 16626759
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine.
    Wang XY; Lammers WJ; Bercik P; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2005 Sep; 289(3):G539-49. PubMed ID: 15860643
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pre-pyloric neural electrical stimulation produces cholinergically-mediated reverse peristalsis in the acute canine model of microprocessor-invoked gastric motility for the treatment of obesity.
    Neshev E; Onen D; Jalilian E; Mintchev MP
    Obes Surg; 2006 Apr; 16(4):510-20. PubMed ID: 16608619
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engaging biological oscillators through second messenger pathways permits emergence of a robust gastric slow-wave during peristalsis.
    Ahmed MA; Venugopal S; Jung R
    PLoS Comput Biol; 2021 Dec; 17(12):e1009644. PubMed ID: 34871315
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Gastroenterology; 2008 Nov; 135(5):1601-11. PubMed ID: 18713627
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Every slow-wave impulse is associated with motor activity of the human stomach.
    Hocke M; Schöne U; Richert H; Görnert P; Keller J; Layer P; Stallmach A
    Am J Physiol Gastrointest Liver Physiol; 2009 Apr; 296(4):G709-16. PubMed ID: 19095766
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activation of neural circuitry and Ca2+ waves in longitudinal and circular muscle during CMMCs and the consequences of rectal aganglionosis in mice.
    Spencer NJ; Bayguinov P; Hennig GW; Park KJ; Lee HT; Sanders KM; Smith TK
    Am J Physiol Gastrointest Liver Physiol; 2007 Feb; 292(2):G546-55. PubMed ID: 17023548
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The myoelectric activity of ileum in fasted and fed young pigs.
    Romański KW; Rudnicki J; Sławuta P
    J Physiol Pharmacol; 2001 Dec; 52(4 Pt 2):851-61. PubMed ID: 11785778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Propagation and neural regulation of calcium waves in longitudinal and circular muscle layers of guinea pig small intestine.
    Stevens RJ; Publicover NG; Smith TK
    Gastroenterology; 2000 May; 118(5):892-904. PubMed ID: 10784588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic slow-wave interactions in the rabbit small intestine defined using high-resolution mapping.
    Cherian Abraham A; Cheng LK; Angeli TR; Alighaleh S; Paskaranandavadivel N
    Neurogastroenterol Motil; 2019 Sep; 31(9):e13670. PubMed ID: 31250520
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Induction and organization of Ca2+ waves by enteric neural reflexes.
    Stevens RJ; Publicover NG; Smith TK
    Nature; 1999 May; 399(6731):62-6. PubMed ID: 10331390
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of feeding on in vivo motility patterns in the proximal intestine of shorthorn sculpin (Myoxocephalus scorpius).
    Brijs J; Hennig GW; Axelsson M; Olsson C
    J Exp Biol; 2014 Sep; 217(Pt 17):3015-27. PubMed ID: 24948631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The propagation of segmental contractions along the small intestine.
    Grivel ML; Ruckebusch Y
    J Physiol; 1972 Dec; 227(2):611-25. PubMed ID: 4647272
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.
    Angeli TR; O'Grady G; Du P; Paskaranandavadivel N; Pullan AJ; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2013 May; 25(5):e304-14. PubMed ID: 23489929
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Orthotopic liver transplantation improves small bowel motility disorders in cirrhotic patients.
    Madrid AM; Brahm J; Buckel E; Silva G; Defilippi C
    Am J Gastroenterol; 1997 Jun; 92(6):1044-5. PubMed ID: 9177529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Slow wave contraction frequency plateaux in the small intestine are composed of discrete waves of interval increase associated with dislocations.
    Parsons SP; Huizinga JD
    Exp Physiol; 2018 Aug; 103(8):1087-1100. PubMed ID: 29860720
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electromechanical activity of the equine small intestine and its correlation with transit of fluid through Thiry-Vella loops.
    Davies JV; Gerring EL
    Res Vet Sci; 1983 May; 34(3):327-33. PubMed ID: 6878885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Co-operation between neural and myogenic mechanisms in the control of distension-induced peristalsis in the mouse small intestine.
    Huizinga JD; Ambrous K; Der-Silaphet T
    J Physiol; 1998 Feb; 506 ( Pt 3)(Pt 3):843-56. PubMed ID: 9503342
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Patterns of spike burst spread and flow in the canine small intestine.
    Summers RW; Dusdieker NS
    Gastroenterology; 1981 Oct; 81(4):742-50. PubMed ID: 7262518
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The phase response and state space of slow wave contractions in the small intestine.
    Parsons SP; Huizinga JD
    Exp Physiol; 2017 Sep; 102(9):1118-1132. PubMed ID: 28671737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.