BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 16020754)

  • 1. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks.
    Xi Q; Cheranov SY; Jaggar JH
    Circ Res; 2005 Aug; 97(4):354-62. PubMed ID: 16020754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries.
    Cheranov SY; Jaggar JH
    J Physiol; 2004 May; 556(Pt 3):755-71. PubMed ID: 14766935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfonylurea receptor-dependent and -independent pathways mediate vasodilation induced by ATP-sensitive K+ channel openers.
    Adebiyi A; McNally EM; Jaggar JH
    Mol Pharmacol; 2008 Sep; 74(3):736-43. PubMed ID: 18511652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of mitochondria-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin-resistant rats.
    Katakam PV; Gordon AO; Sure VN; Rutkai I; Busija DW
    Am J Physiol Heart Circ Physiol; 2014 Aug; 307(4):H493-503. PubMed ID: 24929852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KCa channel insensitivity to Ca2+ sparks underlies fractional uncoupling in newborn cerebral artery smooth muscle cells.
    Li A; Adebiyi A; Leffler CW; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1118-25. PubMed ID: 16603686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase.
    Katakam PV; Wappler EA; Katz PS; Rutkai I; Institoris A; Domoki F; Gáspár T; Grovenburg SM; Snipes JA; Busija DW
    Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):752-9. PubMed ID: 23329133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels.
    Knot HJ; Standen NB; Nelson MT
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):211-21. PubMed ID: 9490841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS; Joshi PG; Joshi NB
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation of arterial smooth muscle by calcium sparks.
    Nelson MT; Cheng H; Rubart M; Santana LF; Bonev AD; Knot HJ; Lederer WJ
    Science; 1995 Oct; 270(5236):633-7. PubMed ID: 7570021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.
    Jaggar JH; Wellman GC; Heppner TJ; Porter VA; Perez GJ; Gollasch M; Kleppisch T; Rubart M; Stevenson AS; Lederer WJ; Knot HJ; Bonev AD; Nelson MT
    Acta Physiol Scand; 1998 Dec; 164(4):577-87. PubMed ID: 9887980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Regulation of the mitochondrial ATP-sensitive potassium channel in rat uterus cells by ROS].
    Badziuk OB; Mazur IuIu; Kosterin SO
    Ukr Biokhim Zh (1999); 2011; 83(3):48-57. PubMed ID: 21888054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired mitochondria-dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance.
    Katakam PV; Domoki F; Snipes JA; Busija AR; Jarajapu YP; Busija DW
    Am J Physiol Regul Integr Comp Physiol; 2009 Feb; 296(2):R289-98. PubMed ID: 19005015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries.
    Pérez GJ; Bonev AD; Patlak JB; Nelson MT
    J Gen Physiol; 1999 Feb; 113(2):229-38. PubMed ID: 9925821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides.
    Porter VA; Bonev AD; Knot HJ; Heppner TJ; Stevenson AS; Kleppisch T; Lederer WJ; Nelson MT
    Am J Physiol; 1998 May; 274(5):C1346-55. PubMed ID: 9612222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells.
    Krenz M; Oldenburg O; Wimpee H; Cohen MV; Garlid KD; Critz SD; Downey JM; Benoit JN
    Basic Res Cardiol; 2002 Sep; 97(5):365-73. PubMed ID: 12200636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria.
    Holmuhamedov EL; Wang L; Terzic A
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):347-60. PubMed ID: 10457054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels.
    Earley S; Heppner TJ; Nelson MT; Brayden JE
    Circ Res; 2005 Dec; 97(12):1270-9. PubMed ID: 16269659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U; Vogt J; Schuh-Hofer S; Dreier JP; Dirnagl U
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels.
    Jaggar JH; Leffler CW; Cheranov SY; Tcheranova D; E S; Cheng X
    Circ Res; 2002 Oct; 91(7):610-7. PubMed ID: 12364389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.