These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 16021616)
1. Proton affinity of diastereoisomers of modified prolines using the kinetic method and density functional theory calculations: role of the cis/trans substituent on the endo/exo ring conformation. Mezzache S; Pepe C; Karoyan P; Fournier F; Tabet JC Rapid Commun Mass Spectrom; 2005; 19(16):2279-83. PubMed ID: 16021616 [TBL] [Abstract][Full Text] [Related]
2. Proton affinity of proline and modified prolines using the kinetic method: role of the conformation investigated by ab initio calculations. Mezzache S; Afonso C; Pepe C; Karoyan P; Fournier F; Tabet JC Rapid Commun Mass Spectrom; 2003; 17(14):1626-32. PubMed ID: 12845589 [TBL] [Abstract][Full Text] [Related]
3. Intramolecular hydrogen bond-controlled prolyl amide isomerization in glucosyl 3'(S)-hydroxy-5'-hydroxymethylproline hybrids: influence of a C-5'-hydroxymethyl substituent on the thermodynamics and kinetics of prolyl amide cis/trans isomerization. Zhang K; Teklebrhan RB; Schreckenbach G; Wetmore S; Schweizer F J Org Chem; 2009 May; 74(10):3735-43. PubMed ID: 19354261 [TBL] [Abstract][Full Text] [Related]
4. Locked conformations for proline pyrrolidine ring: synthesis and conformational analysis of cis- and trans-4-tert-butylprolines. Koskinen AM; Helaja J; Kumpulainen ET; Koivisto J; Mansikkamäki H; Rissanen K J Org Chem; 2005 Aug; 70(16):6447-53. PubMed ID: 16050708 [TBL] [Abstract][Full Text] [Related]
5. Density functional computations of proton affinity and gas-phase basicity of proline. Marino T; Russo N; Tocci E; Toscano M J Mass Spectrom; 2001 Mar; 36(3):301-5. PubMed ID: 11312522 [TBL] [Abstract][Full Text] [Related]
6. Improved proton affinity measurements for proline and modified prolines using triple quadrupole and ion trap mass spectrometers. Mezzache S; Bruneleau N; Vekey K; Afonso C; Karoyan P; Fournier F; Tabet JC J Mass Spectrom; 2005 Oct; 40(10):1300-8. PubMed ID: 16206148 [TBL] [Abstract][Full Text] [Related]
7. Conformational preferences of proline analogues with different ring size. Jhon JS; Kang YK J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495 [TBL] [Abstract][Full Text] [Related]
8. Conformational analysis of L-prolines in water. Aliev AE; Courtier-Murias D J Phys Chem B; 2007 Dec; 111(50):14034-42. PubMed ID: 18027925 [TBL] [Abstract][Full Text] [Related]
9. Proton affinity ladder for uridine and analogs: influence of the hydroxyl group on the sugar ring conformation. Mezzache S; Alves S; Pepe C; Quelquejeu M; Fournier F; Valery JM; Tabet JC J Mass Spectrom; 2005 Jun; 40(6):722-30. PubMed ID: 15827956 [TBL] [Abstract][Full Text] [Related]
10. Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. DeRider ML; Wilkens SJ; Waddell MJ; Bretscher LE; Weinhold F; Raines RT; Markley JL J Am Chem Soc; 2002 Mar; 124(11):2497-505. PubMed ID: 11890798 [TBL] [Abstract][Full Text] [Related]
11. Impact of cis-proline analogs on peptide conformation. Che Y; Marshall GR Biopolymers; 2006 Apr; 81(5):392-406. PubMed ID: 16358327 [TBL] [Abstract][Full Text] [Related]
12. The implications of (2S,4S)-hydroxyproline 4-O-glycosylation for prolyl amide isomerization. Owens NW; Lee A; Marat K; Schweizer F Chemistry; 2009 Oct; 15(40):10649-57. PubMed ID: 19739208 [TBL] [Abstract][Full Text] [Related]
13. Theoretical and experimental investigation of the energetics of cis-trans proline isomerization in peptide models. Schroeder OE; Carper E; Wind JJ; Poutsma JL; Etzkorn FA; Poutsma JC J Phys Chem A; 2006 May; 110(20):6522-30. PubMed ID: 16706410 [TBL] [Abstract][Full Text] [Related]
14. Conformational preference and cis-trans isomerization of 4(R)-substituted proline residues. Song IK; Kang YK J Phys Chem B; 2006 Feb; 110(4):1915-27. PubMed ID: 16471763 [TBL] [Abstract][Full Text] [Related]
15. Cis-trans isomerization and puckering of proline residue. Kang YK; Choi HY Biophys Chem; 2004 Oct; 111(2):135-42. PubMed ID: 15381311 [TBL] [Abstract][Full Text] [Related]
17. Conformational preferences and cis-trans isomerization of azaproline residue. Kang YK; Byun BJ J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267 [TBL] [Abstract][Full Text] [Related]
18. The rate enhancement for prolyl cis-to-trans isomerization of cyclic CPFC peptide is caused by an increase in the vibrational entropy of the transition state. Lee JY; Kang YK J Phys Chem B; 2008 Mar; 112(11):3287-9. PubMed ID: 18302366 [TBL] [Abstract][Full Text] [Related]
19. Puckering transition of proline residue in water. Kang YK J Phys Chem B; 2007 Sep; 111(35):10550-6. PubMed ID: 17696525 [TBL] [Abstract][Full Text] [Related]
20. Protonation of the side group in beta- and gamma-aminated proline analogues: effects on the conformational preferences. Flores-Ortega A; Casanovas J; Assfeld X; Alemán C J Org Chem; 2009 Apr; 74(8):3101-8. PubMed ID: 19296589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]