BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 16022723)

  • 41. Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells.
    Uebersax L; Merkle HP; Meinel L
    J Control Release; 2008 Apr; 127(1):12-21. PubMed ID: 18280603
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioreactor for biaxial mechanical stimulation to tissue engineered constructs.
    Wartella KA; Wayne JS
    J Biomech Eng; 2009 Apr; 131(4):044501. PubMed ID: 19275443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Culturing functional cartilage tissue under a novel bionic mechanical condition.
    Sun M; Lv D; Zhang C; Zhu L
    Med Hypotheses; 2010 Dec; 75(6):657-9. PubMed ID: 20800365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture.
    Emin N; Koç A; Durkut S; Elçin AE; Elçin YM
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(2):123-37. PubMed ID: 18437589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microcarriers in the engineering of cartilage and bone.
    Malda J; Frondoza CG
    Trends Biotechnol; 2006 Jul; 24(7):299-304. PubMed ID: 16678291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biological and biophysical principles in extracorporal bone tissue engineering. Part II.
    Wiesmann HP; Joos U; Meyer U
    Int J Oral Maxillofac Surg; 2004 Sep; 33(6):523-30. PubMed ID: 15308249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of bone marrow derived mesenchymal stem cells in sports injuries.
    Tucker BA; Karamsadkar SS; Khan WS; Pastides P
    J Stem Cells; 2010; 5(4):155-66. PubMed ID: 22314864
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioreactor and scaffold design for the mechanical stimulation of anterior cruciate ligament grafts.
    Hohlrieder M; Teuschl AH; Cicha K; van Griensven M; Redl H; Stampfl J
    Biomed Mater Eng; 2013; 23(3):225-37. PubMed ID: 23629535
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds.
    Jaasma MJ; Plunkett NA; O'Brien FJ
    J Biotechnol; 2008 Feb; 133(4):490-6. PubMed ID: 18221813
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion.
    Grayson WL; Bhumiratana S; Grace Chao PH; Hung CT; Vunjak-Novakovic G
    Osteoarthritis Cartilage; 2010 May; 18(5):714-23. PubMed ID: 20175974
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of seeding technique and scaffold material on bone formation in tissue-engineered constructs.
    Schliephake H; Zghoul N; Jäger V; van Griensven M; Zeichen J; Gelinsky M; Wülfing T
    J Biomed Mater Res A; 2009 Aug; 90(2):429-37. PubMed ID: 18523951
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold.
    Fan H; Liu H; Toh SL; Goh JC
    Biomaterials; 2008 Mar; 29(8):1017-27. PubMed ID: 18023476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Frontiers in tissue engineering. In vitro modulation of chondrogenesis.
    Freed LE; Martin I; Vunjak-Novakovic G
    Clin Orthop Relat Res; 1999 Oct; (367 Suppl):S46-58. PubMed ID: 10546635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics.
    Holtorf HL; Sheffield TL; Ambrose CG; Jansen JA; Mikos AG
    Ann Biomed Eng; 2005 Sep; 33(9):1238-48. PubMed ID: 16133930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro physical stimulation of tissue-engineered and native cartilage.
    Li KW; Klein TJ; Chawla K; Nugent GE; Bae WC; Sah RL
    Methods Mol Med; 2004; 100():325-52. PubMed ID: 15280604
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering.
    Williams KA; Saini S; Wick TM
    Biotechnol Prog; 2002; 18(5):951-63. PubMed ID: 12363345
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor.
    Malafaya PB; Reis RL
    Acta Biomater; 2009 Feb; 5(2):644-60. PubMed ID: 18951857
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.
    Preiss-Bloom O; Mizrahi J; Elisseeff J; Seliktar D
    Artif Organs; 2009 Apr; 33(4):318-27. PubMed ID: 19335408
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bone engineering: combining smart biomaterials and the application of stem cells.
    Lechner S; Huss R
    Artif Organs; 2006 Oct; 30(10):770-4. PubMed ID: 17026576
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs.
    Schulz RM; Wüstneck N; van Donkelaar CC; Shelton JC; Bader A
    Biotechnol Bioeng; 2008 Nov; 101(4):714-28. PubMed ID: 18814291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.