These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1602275)

  • 1. Conditional inhibition of screening-pigment aggregation by lidocaine in crayfish photoreceptors and frog retinal pigment epithelium.
    Mondragón R; Frixione E
    J Exp Biol; 1992 May; 166():197-214. PubMed ID: 1602275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinomotor movements in the frog retinal pigment epithelium: dependence of pigment migration on Na+ and Ca2+.
    Mondragón R; Frixione E
    Exp Eye Res; 1989 May; 48(5):589-603. PubMed ID: 2786817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors.
    Dearry A; Edelman JL; Miller S; Burnside B
    J Neurochem; 1990 Apr; 54(4):1367-78. PubMed ID: 2156019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-adapting migration of the screening-pigment in crayfish photoreceptors is a two-stage movement comprising an all-or-nothing initial phase.
    Frixione E; Pérez-Olvera O
    J Neurobiol; 1991 Apr; 22(3):238-48. PubMed ID: 1890416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interphotoreceptor retinoid-binding protein promotes rhodopsin regeneration in toad photoreceptors.
    Okajima TI; Pepperberg DR; Ripps H; Wiggert B; Chader GJ
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6907-11. PubMed ID: 2118660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin A and the role of the pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye.
    Bridges CD
    Exp Eye Res; 1976 May; 22(5):435-55. PubMed ID: 1084281
    [No Abstract]   [Full Text] [Related]  

  • 7. Range of modulation of light sensitivity by accessory pigments in the crayfish compound eye.
    Rodríguez-Sosa L; Aréchiga H
    Vision Res; 1982; 22(12):1515-24. PubMed ID: 7183001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinomotor pigment migration in the teleost retinal pigment epithelium. II. Cyclic-3',5'-adenosine monophosphate induction of dark-adaptive movement in vitro.
    Burnside B; Basinger S
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):16-23. PubMed ID: 6186630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinomotor pigment migration in the teleost retinal pigment epithelium. I. Roles for actin and microtubules in pigment granule transport and cone movement.
    Burnside B; Adler R; O'Connor P
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):1-15. PubMed ID: 6826305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rhodopsin regeneration: role of interaction between the photoreceptors and pigment epithelium cells].
    Ostapenko IA
    Tsitologiia; 1978 Jun; 20(6):665-9. PubMed ID: 308718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas.
    Dearry A; Burnside B
    J Gen Physiol; 1984 Apr; 83(4):589-611. PubMed ID: 6202826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE.
    Cavallaro B; Burnside B
    Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):882-91. PubMed ID: 3131263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for calcium in the migration of retinal screening pigment in the frog.
    Synder WZ; Zadunaisky JA
    Exp Eye Res; 1976 Apr; 22(4):377-88. PubMed ID: 1085257
    [No Abstract]   [Full Text] [Related]  

  • 14. Dual controls for screening pigment movement in photoreceptors of the Limulus lateral eye: circadian efferent input and light.
    Kier CK; Chamberlain SC
    Vis Neurosci; 1990 Mar; 4(3):237-55. PubMed ID: 2078504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of the pigment screening of the frog retina following administration of neuroactive drugs.
    Kemali M; Milici N; Kemali D
    Exp Eye Res; 1983 Nov; 37(5):493-8. PubMed ID: 6142827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark regeneration of rhodopsin in crayfish photoreceptors.
    Cronin TW; Goldsmith TH
    J Gen Physiol; 1984 Jul; 84(1):63-81. PubMed ID: 6747600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of 3H-cAMP by retinal pigment epithelium isolated from bluegill sunfish (Lepomis macrochirus).
    Keith TA; Radhakrishnan V; Moredock S; García DM
    BMC Neurosci; 2006 Dec; 7():82. PubMed ID: 17196104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourth module of Xenopus interphotoreceptor retinoid-binding protein: activity in retinoid transfer between the retinal pigment epithelium and rod photoreceptors.
    Gonzalez-Fernandez F; Baer CA; Baker E; Okajima TI; Wiggert B; Braiman MS; Pepperberg DR
    Curr Eye Res; 1998 Dec; 17(12):1150-7. PubMed ID: 9872537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromodulation of pigment movement in the RPE of normal and 6-OHDA-lesioned goldfish retinas.
    Ball AK; Baldridge WH; Fernback TC
    Vis Neurosci; 1993; 10(3):529-40. PubMed ID: 8494804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of the green-rod pigment in the isolated frog retina.
    Goldstein EB; Wolf BM
    Vision Res; 1973 Mar; 13(3):527-34. PubMed ID: 4540349
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.