These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16022993)

  • 1. Biomechanical and allergological characteristics of a biodegradable poly(D,L-lactic acid) coating for orthopaedic implants.
    Gollwitzer H; Thomas P; Diehl P; Steinhauser E; Summer B; Barnstorf S; Gerdesmeyer L; Mittelmeier W; Stemberger A
    J Orthop Res; 2005 Jul; 23(4):802-9. PubMed ID: 16022993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials.
    Thomas KA; Kay JF; Cook SD; Jarcho M
    J Biomed Mater Res; 1987 Dec; 21(12):1395-414. PubMed ID: 3429474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study.
    Nimb L; Gotfredsen K; Steen Jensen J
    Acta Orthop Belg; 1993; 59(4):333-8. PubMed ID: 8116363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local application of zoledronic acid incorporated in a poly(D,L-lactide)-coated implant accelerates fracture healing in rats.
    Greiner SH; Wildemann B; Back DA; Alidoust M; Schwabe P; Haas NP; Schmidmaier G
    Acta Orthop; 2008 Oct; 79(5):717-25. PubMed ID: 18839381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Local liberation of IGF-I and TGF-beta 1 from a biodegradable poly(D,L-lactide) coating of implants accelerates fracture healing].
    Schmidmaier G; Wildemann B; Bail H; Lucke M; Stemberger A; Flyvbjerg A; Raschke M
    Chirurg; 2000 Sep; 71(9):1016-22. PubMed ID: 11043118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable poly(D,L-lactide) coating of implants for continuous release of growth factors.
    Schmidmaier G; Wildemann B; Stemberger A; Haas NP; Raschke M
    J Biomed Mater Res; 2001; 58(4):449-55. PubMed ID: 11410904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-beta1) from a biodegradable poly(D,L-lactide) coating of osteosynthetic implants accelerates fracture healing in rats.
    Schmidmaier G; Wildemann B; Bail H; Lucke M; Fuchs T; Stemberger A; Flyvbjerg A; Haas NP; Raschke M
    Bone; 2001 Apr; 28(4):341-50. PubMed ID: 11336914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of bone-implant interface shear strength of solid hydroxyapatite and hydroxyapatite-coated titanium implants.
    Hayashi K; Inadome T; Mashima T; Sugioka Y
    J Biomed Mater Res; 1993 May; 27(5):557-63. PubMed ID: 8314808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.
    Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I
    Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The in vitro observational investigation of antibiotic coating on implants].
    Li SL; Lu Y; Chen DF; Wang MY
    Zhonghua Wai Ke Za Zhi; 2008 Apr; 46(7):518-21. PubMed ID: 18785562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats.
    Zankovych S; Diefenbeck M; Bossert J; Mückley T; Schrader C; Schmidt J; Schubert H; Bischoff S; Faucon M; Finger U; Jandt KD
    Acta Biomater; 2013 Jan; 9(1):4926-34. PubMed ID: 22902814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthopaedic implant related metal toxicity in terms of human lymphocyte reactivity to metal-protein complexes produced from cobalt-base and titanium-base implant alloy degradation.
    Hallab NJ; Mikecz K; Vermes C; Skipor A; Jacobs JJ
    Mol Cell Biochem; 2001 Jun; 222(1-2):127-36. PubMed ID: 11678594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local and controlled release of growth factors (combination of IGF-I and TGF-beta I, and BMP-2 alone) from a polylactide coating of titanium implants does not lead to ectopic bone formation in sheep muscle.
    Wildemann B; Kandziora F; Krummrey G; Palasdies N; Haas NP; Raschke M; Schmidmaier G
    J Control Release; 2004 Mar; 95(2):249-56. PubMed ID: 14980773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.
    Vamsi Krishna B; Xue W; Bose S; Bandyopadhyay A
    Acta Biomater; 2008 May; 4(3):697-706. PubMed ID: 18054298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metallic biomaterials.
    Niinomi M
    J Artif Organs; 2008; 11(3):105-10. PubMed ID: 18836869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyapatite-coated titanium for orthopedic implant applications.
    Cook SD; Thomas KA; Kay JF; Jarcho M
    Clin Orthop Relat Res; 1988 Jul; (232):225-43. PubMed ID: 2838208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.
    Kim H; Johnson JW
    Angle Orthod; 1999 Feb; 69(1):39-44. PubMed ID: 10022183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the titanium Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating on growth and viability of cultured osteoblast-like cells.
    de Lavos-Valereto IC; Deboni MC; Azambuja N; Marques MM
    J Periodontol; 2002 Aug; 73(8):900-5. PubMed ID: 12211500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experimental fusion of the sheep cervical spine. Part II: Effect of growth factors and carrier systems on interbody fusion].
    Kandziora F; Scholz M; Pflugmacher R; Krummrey G; Schollmeier G; Schmidmaier G; Schnake KJ; Duda G; Raschke M; Haas NP
    Chirurg; 2002 Oct; 73(10):1025-38. PubMed ID: 12395162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.