BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16023112)

  • 1. Identification of ADP-ribosylation site in human glutamate dehydrogenase isozymes.
    Choi MM; Huh JW; Yang SJ; Cho EH; Choi SY; Cho SW
    FEBS Lett; 2005 Aug; 579(19):4125-30. PubMed ID: 16023112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of glutamate dehydrogenase by reversible ADP-ribosylation in mitochondria.
    Herrero-Yraola A; Bakhit SM; Franke P; Weise C; Schweiger M; Jorcke D; Ziegler M
    EMBO J; 2001 May; 20(10):2404-12. PubMed ID: 11350929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Important role of Ser443 in different thermal stability of human glutamate dehydrogenase isozymes.
    Yang SJ; Huh JW; Hong HN; Kim TU; Cho SW
    FEBS Lett; 2004 Mar; 562(1-3):59-64. PubMed ID: 15044002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive amino acid residues involved in glutamate-binding of human glutamate dehydrogenase isozymes.
    Yoon HY; Cho EH; Yang SJ; Lee HJ; Huh JW; Choi MM; Cho SW
    Biochimie; 2004; 86(4-5):261-7. PubMed ID: 15194228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of amino acid residues responsible for different GTP preferences of human glutamate dehydrogenase isozymes.
    Choi MM; Hwang EY; Kim EA; Huh JW; Cho SW
    Biochem Biophys Res Commun; 2008 Apr; 368(3):742-7. PubMed ID: 18261983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role of the cysteine 323 residue in the catalytic activity of human glutamate dehydrogenase isozymes.
    Yang SJ; Cho EH; Choi MM; Lee HJ; Huh JW; Choi SY; Cho SW
    Mol Cells; 2005 Feb; 19(1):97-103. PubMed ID: 15750346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid changes within antenna helix are responsible for different regulatory preferences of human glutamate dehydrogenase isozymes.
    Choi MM; Kim EA; Yang SJ; Choi SY; Cho SW; Huh JW
    J Biol Chem; 2007 Jul; 282(27):19510-7. PubMed ID: 17507377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of cysteine residues in the inhibition of human glutamate dehydrogenase by palmitoyl-CoA.
    Son HJ; Ha SC; Hwang EY; Kim EA; Ahn JY; Choi SY; Cho SW
    BMB Rep; 2012 Dec; 45(12):707-12. PubMed ID: 23261056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide-independent, thiol-associated ADP-ribosylation inactivates aldehyde dehydrogenase.
    McDonald LJ; Moss J
    J Biol Chem; 1993 Aug; 268(24):17878-82. PubMed ID: 8349672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of ADP-ribosylation sites on desmin and restoration of desmin intermediate filament assembly by de-ADP-ribosylation .
    Zhou H; Huiatt TW; Robson RM; Sernett SW; Graves DJ
    Arch Biochem Biophys; 1996 Oct; 334(2):214-22. PubMed ID: 8900395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of glutamate level in rat brain through activation of glutamate dehydrogenase by Corydalis ternata.
    Lee KH; Huh JW; Choi MM; Yoon SY; Yang SJ; Hong HN; Cho SW
    Exp Mol Med; 2005 Aug; 37(4):371-7. PubMed ID: 16155414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation.
    Banerjee S; Schmidt T; Fang J; Stanley CA; Smith TJ
    Biochemistry; 2003 Apr; 42(12):3446-56. PubMed ID: 12653548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of glutamine synthetase in Streptomyces griseus by ADP-ribosylation and adenylylation.
    Penyige A; Kálmánczhelyi A; Sipos A; Ensign JC; Barabás G
    Biochem Biophys Res Commun; 1994 Oct; 204(2):598-605. PubMed ID: 7980520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human GLUD2 glutamate dehydrogenase: localization and functional aspects.
    Zaganas I; Kanavouras K; Mastorodemos V; Latsoudis H; Spanaki C; Plaitakis A
    Neurochem Int; 2009; 55(1-3):52-63. PubMed ID: 19428807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a peptide of the guanosine triphosphate binding site within brain glutamate dehydrogenase isoproteins using 8-azidoguanosine triphosphate.
    Cho SW; Ahn JY; Lee J; Choi SY
    Biochemistry; 1996 Nov; 35(44):13907-13. PubMed ID: 8909287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of NUDT5, an ADP-ribose pyrophosphatase, by nitric oxide-mediated ADP-ribosylation.
    Yu HN; Song EK; Yoo SM; Lee YR; Han MK; Yim CY; Kwak JY; Kim JS
    Biochem Biophys Res Commun; 2007 Mar; 354(3):764-8. PubMed ID: 17261271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous ADP-ribosylation for eukaryotic elongation factor 2: evidence of two different sites and reactions.
    Bektaş M; Nurten R; Ergen K; Bermek E
    Cell Biochem Funct; 2006; 24(4):369-80. PubMed ID: 16142694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous ADP-ribosylation of eukaryotic elongation factor 2 and its 32 kDa tryptic fragment.
    Ergen K; Bektaş M; Gökçe S; Nurten R
    Biocell; 2007; 31(1):61-6. PubMed ID: 17665640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Inhibition of ADP-ribosylation by nerve growth factor in the pheochromocytoma PC-12 cell line].
    Kondrat'ev AD; Alakhov VIu; Movsesian VA; Chernyĭ AA; Kaminir LB
    Bioorg Khim; 1986 Jun; 12(6):736-40. PubMed ID: 3778531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition-state structure for the ADP-ribosylation of recombinant Gialpha1 subunits by pertussis toxin.
    Scheuring J; Berti PJ; Schramm VL
    Biochemistry; 1998 Mar; 37(9):2748-58. PubMed ID: 9485425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.