These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 16023125)
1. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. Thelen DG; Anderson FC J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125 [TBL] [Abstract][Full Text] [Related]
2. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach. Heintz S; Gutierrez-Farewik EM Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous prediction of muscle and contact forces in the knee during gait. Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703 [TBL] [Abstract][Full Text] [Related]
4. Dynamic motion planning of 3D human locomotion using gradient-based optimization. Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851 [TBL] [Abstract][Full Text] [Related]
5. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. Neptune RR; Sasaki K J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878 [TBL] [Abstract][Full Text] [Related]
6. Sloped muscle excitation waveforms improve the accuracy of forward dynamic simulations. Camilleri MJ; Hull ML; Hakansson N J Biomech; 2007; 40(7):1423-32. PubMed ID: 16949082 [TBL] [Abstract][Full Text] [Related]
7. The effect of knee model on estimates of muscle and joint forces in recumbent pedaling. Koehle MJ; Hull ML J Biomech Eng; 2010 Jan; 132(1):011007. PubMed ID: 20524745 [TBL] [Abstract][Full Text] [Related]
8. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. Seth A; Pandy MG J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124 [TBL] [Abstract][Full Text] [Related]
9. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. Shelburne KB; Torry MR; Pandy MG J Orthop Res; 2006 Oct; 24(10):1983-90. PubMed ID: 16900540 [TBL] [Abstract][Full Text] [Related]
10. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners. Wu G; Millon D Clin Biomech (Bristol); 2008 Jul; 23(6):787-95. PubMed ID: 18342415 [TBL] [Abstract][Full Text] [Related]
11. Muscle coordination of mediolateral balance in normal walking. Pandy MG; Lin YC; Kim HJ J Biomech; 2010 Aug; 43(11):2055-64. PubMed ID: 20451911 [TBL] [Abstract][Full Text] [Related]
12. Muscles that support the body also modulate forward progression during walking. Liu MQ; Anderson FC; Pandy MG; Delp SL J Biomech; 2006; 39(14):2623-30. PubMed ID: 16216251 [TBL] [Abstract][Full Text] [Related]
13. The neuromuscular demands of toe walking: a forward dynamics simulation analysis. Neptune RR; Burnfield JM; Mulroy SJ J Biomech; 2007; 40(6):1293-300. PubMed ID: 16842801 [TBL] [Abstract][Full Text] [Related]
14. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment. Fang L; Jia X; Wang R Clin Biomech (Bristol); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203 [TBL] [Abstract][Full Text] [Related]
15. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. De Groote F; De Laet T; Jonkers I; De Schutter J J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414 [TBL] [Abstract][Full Text] [Related]
16. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. Geyer H; Herr H IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):263-73. PubMed ID: 20378480 [TBL] [Abstract][Full Text] [Related]
17. Influence of pedaling rate on muscle mechanical energy in low power recumbent pedaling using forward dynamic simulations. Hakansson NA; Hull ML IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):509-16. PubMed ID: 18198708 [TBL] [Abstract][Full Text] [Related]
18. Optimization-based prediction of asymmetric human gait. Xiang Y; Arora JS; Abdel-Malek K J Biomech; 2011 Feb; 44(4):683-93. PubMed ID: 21092968 [TBL] [Abstract][Full Text] [Related]
19. Muscle contributions to support during gait in an individual with post-stroke hemiparesis. Higginson JS; Zajac FE; Neptune RR; Kautz SA; Delp SL J Biomech; 2006; 39(10):1769-77. PubMed ID: 16046223 [TBL] [Abstract][Full Text] [Related]
20. A physiology-based inverse dynamic analysis of human gait using sequential convex programming: a comparative study. De Groote F; Demeulenaere B; Swevers J; De Schutter J; Jonkers I Comput Methods Biomech Biomed Engin; 2012; 15(10):1093-102. PubMed ID: 21878002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]