These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 16023125)

  • 21. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of leg muscle activity and gait kinematics by walking speed and bodyweight unloading.
    van Hedel HJ; Tomatis L; Müller R
    Gait Posture; 2006 Aug; 24(1):35-45. PubMed ID: 16099161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in muscle function during walking and running at the same speed.
    Sasaki K; Neptune RR
    J Biomech; 2006; 39(11):2005-13. PubMed ID: 16129444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle compensatory mechanisms during able-bodied toe walking.
    Sasaki K; Neptune RR; Burnfield JM; Mulroy SJ
    Gait Posture; 2008 Apr; 27(3):440-6. PubMed ID: 17624784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait.
    Remy CD; Thelen DG
    J Biomech Eng; 2009 Mar; 131(3):031005. PubMed ID: 19154064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking.
    Stoquart G; Detrembleur C; Lejeune T
    Neurophysiol Clin; 2008 Apr; 38(2):105-16. PubMed ID: 18423331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of gait speed and gender on perceived exertion, muscle activity, joint motion of lower extremity, ground reaction force and heart rate during normal walking.
    Chiu MC; Wang MJ
    Gait Posture; 2007 Mar; 25(3):385-92. PubMed ID: 16814548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Residual Elimination Algorithm Enhancements to Improve Foot Motion Tracking During Forward Dynamic Simulations of Gait.
    Jackson JN; Hass CJ; Fregly BJ
    J Biomech Eng; 2015 Nov; 137(11):111002. PubMed ID: 26299394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Synergic analysis and dynamics pattern of human normal gait during swing phase].
    Yang Y; Wang R; Hao Z; Jin D; Zhang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):69-73. PubMed ID: 16532813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of inverse-dynamics musculo-skeletal models of AL 288-1 Australopithecus afarensis and KNM-WT 15000 Homo ergaster to modern humans, with implications for the evolution of bipedalism.
    Wang W; Crompton RH; Carey TS; Günther MM; Li Y; Savage R; Sellers WI
    J Hum Evol; 2004 Dec; 47(6):453-78. PubMed ID: 15566947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generating dynamic simulations of movement using computed muscle control.
    Thelen DG; Anderson FC; Delp SL
    J Biomech; 2003 Mar; 36(3):321-8. PubMed ID: 12594980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison and evaluation of two common methods to measure center of mass displacement in three dimensions during gait.
    Gutierrez-Farewik EM; Bartonek A; Saraste H
    Hum Mov Sci; 2006 Apr; 25(2):238-56. PubMed ID: 16458379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent.
    Selk Ghafari A; Meghdari A; Vossoughi GR
    Proc Inst Mech Eng H; 2009 Oct; 223(7):863-74. PubMed ID: 19908425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A baseline of dynamic muscle function during gait.
    Kimmel SA; Schwartz MH
    Gait Posture; 2006 Feb; 23(2):211-21. PubMed ID: 16399518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motor patterns in human walking and running.
    Cappellini G; Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Jun; 95(6):3426-37. PubMed ID: 16554517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses.
    Adouni M; Shirazi-Adl A; Shirazi R
    J Biomech; 2012 Aug; 45(12):2149-56. PubMed ID: 22721726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed.
    Sasaki K; Neptune RR
    Gait Posture; 2006 Apr; 23(3):383-90. PubMed ID: 16029949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VI.1. Gait analysis and synthesis: biomechanics, orthotics, prosthetics.
    Matjacić Z
    Stud Health Technol Inform; 2010; 152():323-42. PubMed ID: 20407202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.