These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 16023125)

  • 61. The effect of walking speed on the gait of typically developing children.
    Schwartz MH; Rozumalski A; Trost JP
    J Biomech; 2008; 41(8):1639-50. PubMed ID: 18466909
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Muscle synergies may improve optimization prediction of knee contact forces during walking.
    Walter JP; Kinney AL; Banks SA; D'Lima DD; Besier TF; Lloyd DG; Fregly BJ
    J Biomech Eng; 2014 Feb; 136(2):021031. PubMed ID: 24402438
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Specimen-specific tibial kinematics model for in vitro gait simulations.
    Natsakis T; Peeters K; Burg F; Dereymaeker G; Vander Sloten J; Jonkers I
    Proc Inst Mech Eng H; 2013 Apr; 227(4):454-63. PubMed ID: 23637221
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Algorithm to compute muscle excitation patterns that accurately track kinematics using a hybrid of numerical integration and optimization.
    Inai T; Takabayashi T; Edama M; Kubo M
    J Biomech; 2020 Jun; 107():109836. PubMed ID: 32517864
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Forward dynamic simulation of bipedal walking in the Japanese macaque: investigation of causal relationships among limb kinematics, speed, and energetics of bipedal locomotion in a nonhuman primate.
    Ogihara N; Aoi S; Sugimoto Y; Tsuchiya K; Nakatsukasa M
    Am J Phys Anthropol; 2011 Aug; 145(4):568-80. PubMed ID: 21590751
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Error propagation from kinematic data to modeled muscle-tendon lengths during walking.
    Oberhofer K; Mithraratne K; Stott NS; Anderson IA
    J Biomech; 2009 Jan; 42(1):77-81. PubMed ID: 19062018
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Real-time gait event detection for paraplegic FES walking.
    Skelly MM; Chizeck HJ
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):59-68. PubMed ID: 11482364
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Timing-specific transfer of adapted muscle activity after walking in an elastic force field.
    Blanchette A; Bouyer LJ
    J Neurophysiol; 2009 Jul; 102(1):568-77. PubMed ID: 19420121
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Compensatory strategies during normal walking in response to muscle weakness and increased hip joint stiffness.
    Goldberg EJ; Neptune RR
    Gait Posture; 2007 Mar; 25(3):360-7. PubMed ID: 16720095
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of equinus foot placement and intrinsic muscle response on knee extension during stance.
    Higginson JS; Zajac FE; Neptune RR; Kautz SA; Burgar CG; Delp SL
    Gait Posture; 2006 Jan; 23(1):32-6. PubMed ID: 16311192
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of vertebral column muscles in level versus upslope treadmill walking-an electromyographic and kinematic study.
    Wada N; Akatani J; Miyajima N; Shimojo K; Kanda K
    Brain Res; 2006 May; 1090(1):99-109. PubMed ID: 16682013
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Experimentally reduced hip abductor function during walking: Implications for knee joint loads.
    Henriksen M; Aaboe J; Simonsen EB; Alkjaer T; Bliddal H
    J Biomech; 2009 Jun; 42(9):1236-40. PubMed ID: 19368926
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Aging and running experience affects the gearing in the musculoskeletal system of the lower extremities while walking.
    Karamanidis K; Arampatzis A
    Gait Posture; 2007 Apr; 25(4):590-6. PubMed ID: 16934980
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Modulation effects of epidural spinal cord stimulation on muscle activities during walking.
    Huang H; He J; Herman R; Carhart MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):14-23. PubMed ID: 16562627
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
    Hidler J; Wisman W; Neckel N
    Clin Biomech (Bristol); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Predictive modelling of human walking over a complete gait cycle.
    Ren L; Jones RK; Howard D
    J Biomech; 2007; 40(7):1567-74. PubMed ID: 17070531
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An in vitro approach to the evaluation of foot-ankle kinematics: performance evaluation of a custom-built gait simulator.
    Peeters K; Natsakis T; Burg J; Spaepen P; Jonkers I; Dereymaeker G; Vander Sloten J
    Proc Inst Mech Eng H; 2013 Sep; 227(9):955-67. PubMed ID: 23736995
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Instantaneous treadmill speed determination using subject's kinematic data.
    Fusco N; Crétual A
    Gait Posture; 2008 Nov; 28(4):663-7. PubMed ID: 18571925
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction.
    Byrne CA; O'Keeffe DT; Donnelly AE; Lyons GM
    J Electromyogr Kinesiol; 2007 Oct; 17(5):605-16. PubMed ID: 16990012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.