BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16023193)

  • 1. Helical rosette nanotubes: a biomimetic coating for orthopedics?
    Chun AL; Moralez JG; Webster TJ; Fenniri H
    Biomaterials; 2005 Dec; 26(35):7304-9. PubMed ID: 16023193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds.
    Zhang L; Ramsaywack S; Fenniri H; Webster TJ
    Tissue Eng Part A; 2008 Aug; 14(8):1353-64. PubMed ID: 18588485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.
    Das K; Bose S; Bandyopadhyay A
    J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.
    Webster TJ; Ejiofor JU
    Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants.
    Zhang L; Chen Y; Rodriguez J; Fenniri H; Webster TJ
    Int J Nanomedicine; 2008; 3(3):323-33. PubMed ID: 18990941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased osteoblast adhesion on nanograined Ti modified with KRSR.
    Balasundaram G; Webster TJ
    J Biomed Mater Res A; 2007 Mar; 80(3):602-11. PubMed ID: 17031820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions.
    Zhao L; Mei S; Chu PK; Zhang Y; Wu Z
    Biomaterials; 2010 Jul; 31(19):5072-82. PubMed ID: 20362328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface.
    Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S
    Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3.
    Webster TJ; Ergun C; Doremus RH; Lanford WA
    J Biomed Mater Res A; 2003 Dec; 67(3):975-80. PubMed ID: 14613247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic implant coatings.
    Eisenbarth E; Velten D; Breme J
    Biomol Eng; 2007 Feb; 24(1):27-32. PubMed ID: 16828342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of calcium ion implantation on human bone cell interaction with titanium.
    Nayab SN; Jones FH; Olsen I
    Biomaterials; 2005 Aug; 26(23):4717-27. PubMed ID: 15763251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments.
    Spriano S; Bosetti M; Bronzoni M; Vernè E; Maina G; Bergo V; Cannas M
    Biomaterials; 2005 Apr; 26(11):1219-29. PubMed ID: 15475051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation.
    Yang L; Sheldon BW; Webster TJ
    J Biomed Mater Res A; 2009 Nov; 91(2):548-56. PubMed ID: 18985788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties.
    Kumeria T; Mon H; Aw MS; Gulati K; Santos A; Griesser HJ; Losic D
    Colloids Surf B Biointerfaces; 2015 Jun; 130():255-63. PubMed ID: 25944564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion.
    Swan EE; Popat KC; Desai TA
    Biomaterials; 2005 May; 26(14):1969-76. PubMed ID: 15576171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helical rosette nanotubes with tunable stability and hierarchy.
    Moralez JG; Raez J; Yamazaki T; Motkuri RK; Kovalenko A; Fenniri H
    J Am Chem Soc; 2005 Jun; 127(23):8307-9. PubMed ID: 15941263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement in cell proliferation on silicone rubber by carbon nanotube coating.
    Matsuoka M; Akasaka T; Hashimoto T; Totsuka Y; Watari F
    Biomed Mater Eng; 2009; 19(2-3):155-62. PubMed ID: 19581709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles: the influence of positively and negatively charged oxide surface coatings.
    Rezwan K; Meier LP; Gauckler LJ
    Biomaterials; 2005 Jul; 26(21):4351-7. PubMed ID: 15701363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films.
    Thian ES; Huang J; Best SM; Barber ZH; Brooks RA; Rushton N; Bonfield W
    Biomaterials; 2006 May; 27(13):2692-8. PubMed ID: 16423389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.