BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16023471)

  • 1. Cellular accommodation and the response of bone to mechanical loading.
    Schriefer JL; Warden SJ; Saxon LK; Robling AG; Turner CH
    J Biomech; 2005 Sep; 38(9):1838-45. PubMed ID: 16023471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading.
    Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.
    Hsieh YF; Wang T; Turner CH
    Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats.
    Mosley JR; Lanyon LE
    Bone; 1998 Oct; 23(4):313-8. PubMed ID: 9763142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of cortical bone adaptation in a rat ulna: effect of frequency.
    Chennimalai Kumar N; Dantzig JA; Jasiuk IM
    Bone; 2012 Mar; 50(3):792-7. PubMed ID: 22210383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site specific bone adaptation response to mechanical loading.
    Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP
    J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading.
    Lee KC; Maxwell A; Lanyon LE
    Bone; 2002 Sep; 31(3):407-12. PubMed ID: 12231414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound mimics the effect of mechanical loading on bone formation in vivo on rat ulnae.
    Perry MJ; Parry LK; Burton VJ; Gheduzzi S; Beresford JN; Humphrey VF; Skerry TM
    Med Eng Phys; 2009 Jan; 31(1):42-7. PubMed ID: 18495517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling of long bone adaptation due to mechanical loading: correlation with experiments.
    Chennimalai Kumar N; Dantzig JA; Jasiuk IM; Robling AG; Turner CH
    Ann Biomed Eng; 2010 Mar; 38(3):594-604. PubMed ID: 20013156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off.
    Saxon LK; Robling AG; Alam I; Turner CH
    Bone; 2005 Mar; 36(3):454-64. PubMed ID: 15777679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo].
    Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y
    Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance.
    Warden SJ; Hurst JA; Sanders MS; Turner CH; Burr DB; Li J
    J Bone Miner Res; 2005 May; 20(5):809-16. PubMed ID: 15824854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of tenascin-C in bones responding to mechanical load.
    Webb CM; Zaman G; Mosley JR; Tucker RP; Lanyon LE; Mackie EJ
    J Bone Miner Res; 1997 Jan; 12(1):52-8. PubMed ID: 9240725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element prediction of endosteal and periosteal bone remodelling in the turkey ulna: effect of remodelling signal and dead-zone definition.
    Taylor WR; Warner MD; Clift SE
    Proc Inst Mech Eng H; 2003; 217(5):349-56. PubMed ID: 14558647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphologic stages in lamellar bone formation stimulated by a potent mechanical stimulus.
    Rubin CT; Gross TS; McLeod KJ; Bain SD
    J Bone Miner Res; 1995 Mar; 10(3):488-95. PubMed ID: 7785471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weight loading young chicks inhibits bone elongation and promotes growth plate ossification and vascularization.
    Reich A; Jaffe N; Tong A; Lavelin I; Genina O; Pines M; Sklan D; Nussinovitch A; Monsonego-Ornan E
    J Appl Physiol (1985); 2005 Jun; 98(6):2381-9. PubMed ID: 15677737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.
    Norman SC; Wagner DW; Beaupre GS; Castillo AB
    J Biomech; 2015 Jan; 48(1):53-8. PubMed ID: 25443882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.