These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16023483)

  • 1. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.
    Higginson JS; Neptune RR; Anderson FC
    J Biomech; 2005 Sep; 38(9):1938-42. PubMed ID: 16023483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology.
    Valero-Cuevas FJ; Anand VV; Saxena A; Lipson H
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1951-64. PubMed ID: 18018690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of optimization techniques for tuning a finite element model of the lung to biomechanical data.
    Gayzik FS; Hoth JJ; Stitzel JD
    Biomed Sci Instrum; 2007; 43():212-7. PubMed ID: 17487083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physiology-based inverse dynamic analysis of human gait using sequential convex programming: a comparative study.
    De Groote F; Demeulenaere B; Swevers J; De Schutter J; Jonkers I
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1093-102. PubMed ID: 21878002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the multiple competitive facilities location and design problem on the plane.
    Redondo JL; Fernández J; García I; Ortigosa PM
    Evol Comput; 2009; 17(1):21-53. PubMed ID: 19207087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The merits of a parallel genetic algorithm in solving hard optimization problems.
    van Soest AJ; Casius LJ
    J Biomech Eng; 2003 Feb; 125(1):141-6. PubMed ID: 12661208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach.
    Corazza S; Mündermann L; Chaudhari AM; Demattio T; Cobelli C; Andriacchi TP
    Ann Biomed Eng; 2006 Jun; 34(6):1019-29. PubMed ID: 16783657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast simulated annealing algorithm for BAEP time delay estimation using a reduced order dynamic model.
    Cherrid N; Naït-Ali A; Siarry P
    Med Eng Phys; 2005 Oct; 27(8):705-11. PubMed ID: 16139768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization algorithm performance in determining optimal controls in human movement analyses.
    Neptune RR
    J Biomech Eng; 1999 Apr; 121(2):249-52. PubMed ID: 10211461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human body pose estimation with particle swarm optimisation.
    Ivekovic S; Trucco E; Petillot YR
    Evol Comput; 2008; 16(4):509-28. PubMed ID: 19053497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rigorous dynamical-systems-based analysis of the self-stabilizing influence of muscles.
    Eriten M; Dankowicz H
    J Biomech Eng; 2009 Jan; 131(1):011011. PubMed ID: 19045927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle stimulation waveform timing patterns for upper and lower leg muscle groups to increase muscular endurance in functional electrical stimulation pedaling using a forward dynamic model.
    Hakansson NA; Hull ML
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2263-70. PubMed ID: 19380265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems.
    Andersen MS; Damsgaard M; MacWilliams B; Rasmussen J
    Comput Methods Biomech Biomed Engin; 2010; 13(2):171-83. PubMed ID: 19693717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a simulated annealing algorithm to fit compartmental models with an application to fractal pharmacokinetics.
    Marsh RE; Riauka TA; McQuarrie SA
    J Pharm Pharm Sci; 2007; 10(2):168-79. PubMed ID: 17706176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb.
    Pennestrì E; Stefanelli R; Valentini PP; Vita L
    J Biomech; 2007; 40(6):1350-61. PubMed ID: 16824531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle forces during running predicted by gradient-based and random search static optimisation algorithms.
    Miller RH; Gillette JC; Derrick TR; Caldwell GE
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):217-25. PubMed ID: 18828028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new evolutionary algorithm for solving many-objective optimization problems.
    Zou X; Chen Y; Liu M; Kang L
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1402-12. PubMed ID: 18784020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference energy extremal optimization: a stochastic search algorithm applied to computational protein design.
    Zhang N; Zeng C
    J Comput Chem; 2008 Aug; 29(11):1762-71. PubMed ID: 18351599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal design of minimum mean-square error noise reduction algorithms using the simulated annealing technique.
    Bai MR; Hsieh PJ; Hur KN
    J Acoust Soc Am; 2009 Feb; 125(2):934-43. PubMed ID: 19206870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.