These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 16023571)

  • 41. Influence of wastewater composition on denitrification and biological P-removal in the S-DN-P-process: effects of different substrates (a).
    Choi HJ; Choi CH; Lee SM
    Water Sci Technol; 2007; 56(8):79-84. PubMed ID: 17978435
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Foaming control by automatic carbon source adjustment using an ORP profile in sequencing batch reactors for enhanced nitrogen removal in swine wastewater treatment.
    Chen M; Kim JH; Yang M; Wang Y; Kishida N; Kawamura K; Sudo R
    Bioprocess Biosyst Eng; 2010 Mar; 33(3):355-62. PubMed ID: 19466460
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long term operation of pilot-scale biological nutrient removal process in treating municipal wastewater.
    Kim D; Kim KY; Ryu HD; Min KK; Lee SI
    Bioresour Technol; 2009 Jul; 100(13):3180-4. PubMed ID: 19269166
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Achieving and maintaining biological nitrogen removal via nitrite under normal conditions.
    Cui YW; Peng YZ; Gan XQ; Ye L; Wang YY
    J Environ Sci (China); 2005; 17(5):794-7. PubMed ID: 16313005
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sludge hydrolysate as a carbon source for denitrification.
    Aravinthan V; Mino T; Takizawa S; Satoh H; Matsuo T
    Water Sci Technol; 2001; 43(1):191-9. PubMed ID: 11379091
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use pH and ORP as fuzzy control parameters of denitrification in SBR process.
    Peng YZ; Gao JF; Wang SY; Sui MH
    Water Sci Technol; 2002; 46(4-5):131-7. PubMed ID: 12361001
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater.
    Lei CN; Whang LM; Lin HL
    Water Sci Technol; 2008; 58(5):1001-6. PubMed ID: 18824797
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combining photo-Fenton process with biological sequencing batch reactor for 2,4-dichlorophenol degradation.
    Al Momani F; Gonzalez O; Sans C; Esplugas S
    Water Sci Technol; 2004; 49(4):293-8. PubMed ID: 15077986
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theoretical analysis and enhanced nitrogen removal performance of step-feed SBR.
    Guo J; Peng Y; Yang Q; Wang S; Chen Y; Zhao C
    Water Sci Technol; 2008; 58(4):795-802. PubMed ID: 18776614
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Balancing yield, kinetics and cost for three external carbon sources used for suspended growth post-denitrification.
    Mokhayeri Y; Riffat R; Murthy S; Bailey W; Takacs I; Bott C
    Water Sci Technol; 2009; 60(10):2485-91. PubMed ID: 19923753
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Treatment of phenolic wastewater using agricultural wastes as an adsorbent in a sequencing batch reactor.
    Lee KM; Lim PE
    Water Sci Technol; 2003; 47(10):41-7. PubMed ID: 12862215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biological nitrogen removal of ammonia-rich centrate in batch systems.
    Boyle-Gotla A; Elefsiniotis P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(3):331-7. PubMed ID: 23245308
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimisation of sanitary landfill leachate treatment in a sequencing batch reactor.
    Spagni A; Marsili-Libelli S; Lavagnolo MC
    Water Sci Technol; 2008; 58(2):337-43. PubMed ID: 18701783
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation.
    Zhang B; Zhao H; Zhou S; Shi C; Wang C; Ni J
    Bioresour Technol; 2009 Dec; 100(23):5687-93. PubMed ID: 19604688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).
    Muñoz C; Young H; Antileo C; Bornhardt C
    Water Sci Technol; 2009; 60(10):2545-53. PubMed ID: 19923760
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of denitrification potential of rotating biological contactors for treatment of municipal wastewater.
    Hanhan O; Orhon D; Krauth Kh; Günder B
    Water Sci Technol; 2005; 51(11):131-9. PubMed ID: 16114626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of carbon as an energy source for biological denitrification through Pseudomonas stutzeri.
    Shivran HS; Kumar S; Kumar D; Singh RV
    J Environ Sci Eng; 2005 Apr; 47(2):115-8. PubMed ID: 16649614
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Model-based optimization of a sequencing batch reactor for biological nitrogen removal.
    Souza SM; Araújo OQ; Coelho MA
    Bioresour Technol; 2008 May; 99(8):3213-23. PubMed ID: 17669644
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biodegradation and effect of formaldehyde and phenol on the denitrification process.
    Eiroa M; Vilar A; Amor L; Kennes C; Veiga MC
    Water Res; 2005; 39(2-3):449-55. PubMed ID: 15644253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR.
    Wang F; Lu S; Wei Y; Ji M
    J Hazard Mater; 2009 May; 164(2-3):1223-7. PubMed ID: 18980806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.