BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16023661)

  • 1. Removal of aqueous ammonium with magnesium phosphates obtained from the ammonium-elimination of magnesium ammonium phosphate.
    Sugiyama S; Yokoyama M; Ishizuka H; Sotowa K; Tomida T; Shigemoto N
    J Colloid Interface Sci; 2005 Dec; 292(1):133-8. PubMed ID: 16023661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of ammonium and phosphates from wastewater resulting from the process of cochineal extraction using MgO-containing by-product.
    Chimenos JM; Fernández AI; Villalba G; Segarra M; Urruticoechea A; Artaza B; Espiell F
    Water Res; 2003 Apr; 37(7):1601-7. PubMed ID: 12600388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Thermal behavior of phosphate-bonded investment. Part 2. Reactions in the systems of MgO-MgNH4PO4.6H2O and MgO-NH4H2PO4 (author's transl)].
    Higuchi H; Matsuya S; Yamane M
    Shika Rikogaku Zasshi; 1982 Jan; 23(61):6-11. PubMed ID: 6951899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel magnesium-rich tricalcium aluminate for simultaneous removal of ammonium and phosphorus: Response surface methodology and mechanism investigation.
    Mao Y; Yu S; Li P; Liu G; Ouyang S; Zhu Z; Zhang P
    Environ Res; 2021 Apr; 195():110719. PubMed ID: 33549622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous removal of phosphorus and potassium from synthetic urine through the precipitation of magnesium potassium phosphate hexahydrate.
    Xu K; Wang C; Liu H; Qian Y
    Chemosphere; 2011 Jun; 84(2):207-12. PubMed ID: 21596418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation.
    Uludag-Demirer S; Othman M
    Bioresour Technol; 2009 Jul; 100(13):3236-44. PubMed ID: 19318246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal mechanism of phosphate from aqueous solution by fly ash.
    Lu SG; Bai SQ; Zhu L; Shan HD
    J Hazard Mater; 2009 Jan; 161(1):95-101. PubMed ID: 18434007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous ammonium and phosphate recovery and stabilization from urban sewage sludge anaerobic digestates using reactive sorbents.
    Hermassi M; Dosta J; Valderrama C; Licon E; Moreno N; Querol X; Batis NH; Cortina JL
    Sci Total Environ; 2018 Jul; 630():781-789. PubMed ID: 29499536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of phosphate removal in anodizing aluminium wastewater.
    Chimenos JM; Fernández AI; Hernández A; Haurie L; Espiell F; Ayora C
    Water Res; 2006 Jan; 40(1):137-43. PubMed ID: 16343583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous phosphorus and nitrogen recovery from anaerobically digested sludge using a hybrid system coupling hydrothermal pretreatment with MAP precipitation.
    Yu Y; Lei Z; Yuan T; Jiang Y; Chen N; Feng C; Shimizu K; Zhang Z
    Bioresour Technol; 2017 Nov; 243():634-640. PubMed ID: 28709068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of coking wastewater by using manganese and magnesium ores.
    Chen T; Huang X; Pan M; Jin S; Peng S; Fallgren PH
    J Hazard Mater; 2009 Sep; 168(2-3):843-7. PubMed ID: 19297089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Setting and thermal reactions of phosphate investments.
    Neiman R; Sarma AC
    J Dent Res; 1980 Sep; 59(9):1478-85. PubMed ID: 6931124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach.
    Bhuiyan MI; Mavinic DS; Koch FA
    Water Sci Technol; 2008; 57(2):175-81. PubMed ID: 18235168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Thermal behavior of phosphate-bonded investment. Part 1. Thermal behavior of MgNH4PO4.6H2O (author's transl)].
    Higuchi H; Matsuya S; Yamane M
    Shika Rikogaku Zasshi; 1982 Jan; 23(61):1-5. PubMed ID: 6951896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates.
    Sugiyama S; Ichii T; Fujisawa M; Kawashiro K; Tomida T; Shigemoto N; Hayashi H
    J Colloid Interface Sci; 2003 Mar; 259(2):408-10. PubMed ID: 16256522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ureolytic phosphate precipitation from anaerobic effluents.
    Desmidt E; Verstraete W; Dick J; Meesschaert BD; Carballa M
    Water Sci Technol; 2009; 59(10):1983-8. PubMed ID: 19474493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autotrophic denitrification and chemical phosphate removal of agro-industrial wastewater by filtration with granular medium.
    Tanaka Y; Yatagai A; Masujima H; Waki M; Yokoyama H
    Bioresour Technol; 2007 Mar; 98(4):787-91. PubMed ID: 16707261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent.
    Karageorgiou K; Paschalis M; Anastassakis GN
    J Hazard Mater; 2007 Jan; 139(3):447-52. PubMed ID: 16597487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium source with function of slowly releasing Mg and pH control for impurity-resistance synthesis ultra-large struvite from wastewater.
    Zhou T; Xu N; Chen G; Zhang M; Ji T; Feng X; Wang C
    Sci Total Environ; 2024 May; 924():171636. PubMed ID: 38485021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of magnesium hydrosilicate nanomaterials and its applications for phosphate/ammonium removal.
    Yu R; Liu F; Ren H; Wu J; Zhang X
    Environ Technol; 2018 Sep; 39(17):2162-2167. PubMed ID: 28748742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.