These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 16023718)

  • 1. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications.
    Lévesque SG; Lim RM; Shoichet MS
    Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application.
    Sannino A; Netti PA; Madaghiele M; Coccoli V; Luciani A; Maffezzoli A; Nicolais L
    J Biomed Mater Res A; 2006 Nov; 79(2):229-36. PubMed ID: 16752396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels.
    Ferreira L; Gil MH; Cabrita AM; Dordick JS
    Biomaterials; 2005 Aug; 26(23):4707-16. PubMed ID: 15763250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of cell-adhesive dextran hydrogels and macroporous scaffolds.
    Lévesque SG; Shoichet MS
    Biomaterials; 2006 Oct; 27(30):5277-85. PubMed ID: 16793132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dextran-polyethylene glycol cryogels as spongy scaffolds for drug delivery.
    Pacelli S; Di Muzio L; Paolicelli P; Fortunati V; Petralito S; Trilli J; Casadei MA
    Int J Biol Macromol; 2021 Jan; 166():1292-1300. PubMed ID: 33161086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering.
    Yue Z; Wen F; Gao S; Ang MY; Pallathadka PK; Liu L; Yu H
    Biomaterials; 2010 Nov; 31(32):8141-52. PubMed ID: 20691470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels.
    Lee S; Tong X; Yang F
    Acta Biomater; 2014 Oct; 10(10):4167-74. PubMed ID: 24887284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering.
    Hwang Y; Sangaj N; Varghese S
    Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroporous Poly(N-isopropylacrylamide) hydrogels with adjustable size "cut-off" for the efficient and reversible immobilization of biomacromolecules.
    Fänger C; Wack H; Ulbricht M
    Macromol Biosci; 2006 Jun; 6(6):393-402. PubMed ID: 16761272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of dextran-based hydrogels obtained chemoenzymatically.
    Ferreira L; Figueiredo MM; Gil MH; Ramos MA
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):55-64. PubMed ID: 16211568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds.
    Leach JB; Schmidt CE
    Biomaterials; 2005 Jan; 26(2):125-35. PubMed ID: 15207459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-gelling hydrogels based on oppositely charged dextran microspheres.
    Van Tomme SR; van Steenbergen MJ; De Smedt SC; van Nostrum CF; Hennink WE
    Biomaterials; 2005 May; 26(14):2129-35. PubMed ID: 15576188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization.
    Pacelli S; Paolicelli P; Casadei MA
    Carbohydr Polym; 2015 Aug; 126():208-14. PubMed ID: 25933541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery.
    Lee YP; Liu HY; Lin PC; Lee YH; Yu LR; Hsieh CC; Shih PJ; Shih WP; Wang IJ; Yen JY; Dai CA
    Colloids Surf B Biointerfaces; 2019 Mar; 175():26-35. PubMed ID: 30513471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term culture of HL-1 cardiomyocytes in modular poly(ethylene glycol) microsphere-based scaffolds crosslinked in the phase-separated state.
    Smith AW; Segar CE; Nguyen PK; MacEwan MR; Efimov IR; Elbert DL
    Acta Biomater; 2012 Jan; 8(1):31-40. PubMed ID: 21920469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of macroporous poly(ethylene glycol) hydrogel arrays within microfluidic channels.
    Lee AG; Arena CP; Beebe DJ; Palecek SP
    Biomacromolecules; 2010 Dec; 11(12):3316-24. PubMed ID: 21028794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.