BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 16023875)

  • 1. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana).
    Hedrick MS; Chen AK; Jessop KL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):231-40. PubMed ID: 16023875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the respiratory response to hypoxia in the isolated brainstem of the bullfrog Rana catesbeiana.
    Winmill RE; Chen AK; Hedrick MS
    J Exp Biol; 2005 Jan; 208(Pt 2):213-22. PubMed ID: 15634841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstem.
    Winmill RE; Hedrick MS
    J Neurobiol; 2003 Jun; 55(3):278-87. PubMed ID: 12717698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noradrenergic modulation of respiratory motor output during tadpole development: Role of alpha-adrenoceptors.
    Fournier S; Kinkead R
    J Exp Biol; 2006 Sep; 209(Pt 18):3685-94. PubMed ID: 16943508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide as a modulator of central respiratory rhythm in the isolated brainstem of the bullfrog (Rana catesbeiana).
    Hedrick MS; Morales RD
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):243-51. PubMed ID: 10665377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the respiratory central pattern generator by chloride-dependent inhibition during development in the bullfrog (Rana catesbeiana).
    Broch L; Morales RD; Sandoval AV; Hedrick MS
    J Exp Biol; 2002 Apr; 205(Pt 8):1161-9. PubMed ID: 11919275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of medullary RaphĂ© stimulation on fictive lung ventilation during development in Rana catesbeiana.
    Belzile O; Gulemetova R; Kinkead R
    J Exp Biol; 2007 Jun; 210(Pt 12):2046-56. PubMed ID: 17562878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticosterone promotes emergence of fictive air breathing in Xenopus laevis Daudin tadpole brainstems.
    Fournier S; Dubé PL; Kinkead R
    J Exp Biol; 2012 Apr; 215(Pt 7):1144-50. PubMed ID: 22399659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in central O2 chemoreflex in Rana catesbeiana: the role of noradrenergic modulation.
    Fournier S; Allard M; Roussin S; Kinkead R
    J Exp Biol; 2007 Sep; 210(Pt 17):3015-26. PubMed ID: 17704076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of central chemoreception during fictive gill and lung ventilation in an in vitro brainstem preparation of Rana catesbeiana.
    Torgerson C; Gdovin M; Remmers J
    J Exp Biol; 1997; 200(Pt 15):2063-72. PubMed ID: 9319973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fictively breathing tadpole brainstem preparation as a model for the development of respiratory pattern generation and central chemoreception.
    Gdovin MJ; Torgerson CS; Remmers JE
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):275-86. PubMed ID: 10665380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of pontine neurons in central O(2) chemoreflex during development in bullfrogs (Lithobates catesbeiana).
    Fournier S; Kinkead R
    Neuroscience; 2008 Aug; 155(3):983-96. PubMed ID: 18590803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ontogeny of respiratory muscle control. Evidence from the amphibian model].
    Straus C
    Rev Mal Respir; 2000 Jun; 17(2 Pt 2):585-90. PubMed ID: 10939119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fictive gill and lung ventilation in the pre- and postmetamorphic tadpole brain stem.
    Torgerson CS; Gdovin MJ; Remmers JE
    J Neurophysiol; 1998 Oct; 80(4):2015-22. PubMed ID: 9772257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of prevention of lung inflation on metamorphosis and respiration in the developing bullfrog tadpole, Rana catesbeiana.
    Gdovin MJ; Jackson VV; Zamora DA; Leiter JC
    J Exp Zool A Comp Exp Biol; 2006 Apr; 305(4):335-47. PubMed ID: 16493648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide modulates respiratory-related neural activity in the isolated brainstem of the bullfrog.
    Hedrick MS; Morales RD; Parker JM; Pacheco JL
    Neurosci Lett; 1998 Jul; 251(2):81-4. PubMed ID: 9718979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent augmentation of fictive air breathing by hypoxia: An in vitro study of the role of GABA
    Janes TA; Guay LM; Fournier S; Kinkead R
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jul; 281():111437. PubMed ID: 37088410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats.
    Vasilakos K; Wilson RJ; Kimura N; Remmers JE
    J Neurobiol; 2005 Feb; 62(3):369-85. PubMed ID: 15551345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central Hypoxia Elicits Long-Term Expression of the Lung Motor Pattern in Pre-metamorphic Lithobates Catesbeianus.
    Janes TA; Kinkead R
    Adv Exp Med Biol; 2018; 1071():75-82. PubMed ID: 30357736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap junction blockade with carbenoxolone differentially affects fictive breathing in larval and adult bullfrogs.
    Winmill RE; Hedrick MS
    Respir Physiol Neurobiol; 2003 Nov; 138(2-3):239-51. PubMed ID: 14609513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.