These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 16023913)
1. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Mertens J; Luyssaert S; Verheyen K Environ Pollut; 2005 Nov; 138(1):1-4. PubMed ID: 16023913 [TBL] [Abstract][Full Text] [Related]
2. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Notten MJ; Oosthoek AJ; Rozema J; Aerts R Environ Pollut; 2005 Nov; 138(1):178-90. PubMed ID: 16005127 [TBL] [Abstract][Full Text] [Related]
4. Natural variation of copper, zinc, cadmium and selenium concentrations in Bembicium nanum and their potential use as a biomonitor of trace metals. Gay D; Maher W Water Res; 2003 May; 37(9):2173-85. PubMed ID: 12691903 [TBL] [Abstract][Full Text] [Related]
5. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Liang HM; Lin TH; Chiou JM; Yeh KC Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408 [TBL] [Abstract][Full Text] [Related]
6. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Vandecasteele B; Quataert P; Genouw G; Lettens S; Tack FM Sci Total Environ; 2009 Oct; 407(20):5289-97. PubMed ID: 19619889 [TBL] [Abstract][Full Text] [Related]
7. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
8. Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. Lettens S; Vandecasteele B; De Vos B; Vansteenkiste D; Verschelde P Sci Total Environ; 2011 May; 409(11):2306-16. PubMed ID: 21420720 [TBL] [Abstract][Full Text] [Related]
9. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Madejón P; Marañón T; Murillo JM; Robinson B Environ Pollut; 2004 Nov; 132(1):145-55. PubMed ID: 15276282 [TBL] [Abstract][Full Text] [Related]
10. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Meers E; Lamsal S; Vervaeke P; Hopgood M; Lust N; Tack FM Environ Pollut; 2005 Sep; 137(2):354-64. PubMed ID: 15963374 [TBL] [Abstract][Full Text] [Related]
11. A comparison of phytoremediation capability of selected plant species for given trace elements. Fischerová Z; Tlustos P; Jirina Száková ; Kornelie Sichorová Environ Pollut; 2006 Nov; 144(1):93-100. PubMed ID: 16516363 [TBL] [Abstract][Full Text] [Related]
12. Influence of brown coal on limit of phytotoxicity of soils contaminated with heavy metals. Pusz A J Hazard Mater; 2007 Nov; 149(3):590-7. PubMed ID: 17693020 [TBL] [Abstract][Full Text] [Related]
13. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Hobbelen PH; Koolhaas JE; van Gestel CA Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310 [TBL] [Abstract][Full Text] [Related]
14. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
15. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
17. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis). Teuchies J; de Deckere E; Bervoets L; Meynendonckx J; van Regenmortel S; Blust R; Meire P Environ Pollut; 2008 Sep; 155(1):20-30. PubMed ID: 18158203 [TBL] [Abstract][Full Text] [Related]
18. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Manousaki E; Kadukova J; Papadantonakis N; Kalogerakis N Environ Res; 2008 Mar; 106(3):326-32. PubMed ID: 17543928 [TBL] [Abstract][Full Text] [Related]
19. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664 [TBL] [Abstract][Full Text] [Related]
20. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Li MS; Luo YP; Su ZY Environ Pollut; 2007 May; 147(1):168-75. PubMed ID: 17014941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]